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Abstract

Burden sharing within an international alliance is a contentious topic, especially in

the current geopolitical environment, that in practice is generally imposed by a cen-

tral authority’s perception of its members’ abilities to contribute. Instead, we propose

a cost sharing mechanism such that burden shares are allocated to nations based on

their honest declarations of the alliance’s worth. Specifically, we develop a set of

multiobjective nonlinear optimization problem formulations that respectively impose

Bayesian Incentive Compatible (BIC), Strategyproof (SP), and Group Strategyproof

(GSP) mechanisms based on probabilistic inspection efforts and deception penalties

that are budget balanced and in the core. Any feasible solution to these problems

corresponds to a single stage Bayesian stochastic game wherein a collectively honest

declaration is a Bayes-Nash equilibrium, a Nash Equilibrium in dominant strate-

gies, or a collusion resistant Nash equilibrium, respectively, but the optimal solution

considers the alliance’s central authority preferences. Each formulation is shown to

be a nonconvex optimization problem. The solution quality and computational ef-

fort required for three heuristic algorithms as well as the BARON global solver are

analyzed to determine the superlative solution methodology for each problem. The

Pareto fronts associated with each multiobjective optimization problem are examined

to determine the tradeoff between inspection frequency and penalty severity required

to obtain truthfulness under stronger assumptions. Memory limitations are examined

to ascertain the size of alliances for which the proposed methodology can be utilized.

Finally, a full block design experiment considering the clustering of available alliance

valuations and the member nations’ probability distributions therein is executed on

an intermediate-sized alliance motivated by the South American alliance UNASUR.

iv



AFIT-ENS-MS-17-M-117

To my wife, I pray that I’ve made you feel as loved and supported as you have I.

To my sons, being your father makes me a better man. I love you all.

v



Acknowledgements

I would like to thank Dr. Brian Lunday for his immense help with this manuscript.

Without his tutelage, I would never have been able to coalesce this litany of ideas

into a coherent body of work. I owe him much in regard to the elegance of the

mathematical formulations and to the eloquence of the narrative. Likewise, I would

like to thank Dr. Darryl Ahner for his quality and timely revisions of the final

manuscript. Finally, I would be remiss to not thank my wife, mother, and father-in-

law for their revisions of early manuscripts.

William N. Caballero

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Social Choice Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Cost Sharing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Burden Sharing in International Affairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

III. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Mechanism Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Bayesian Incentive Compatible Formulation . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Alternative Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Convexity of Formulations using BIC, SP, or GSP

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Relative Formulation Size Induced via BIC, SP, or GSP

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

IV. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Small Instance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Analysis of Solver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Analysis of Decision Variables for Varying Truthfulness . . . . . . . . . . . . . . 49

4.2 Memory Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Larger Instance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Appendix A. Storyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



List of Figures

Figure Page

1 Pareto Front Estimates of BIC, SP and GSP Small
Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Pareto Front Estimates of BIC, SP and GSP Small
Instances with Alternate Penalty and Subsidy Function . . . . . . . . . . . . . . 54

3 Comparison of the Number of Constraints Required for
Varying m and ‖Φ‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Feasible (m,‖Φ‖)-combinations for a Computer with
192GB of RAM or 64 bit Theoretical Max (234 GBs) . . . . . . . . . . . . . . . . 56

5 Feasible (m,‖Φ‖)-combination Formulations by Problem
Type with 192 GB RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Decision Variable Results in the 12 Player and 5 Type
Full Block Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



List of Tables

Table Page

1 Formulation Size Example: All Type Vectors Existing
in Θ by Country . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Formulation Size Example: αθi,j for Each Country and
Type Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Small Instance Testing Results for BIC, SP and GSP . . . . . . . . . . . . . . . . 48

4 BARON Solution Time Breakout for Small Instance
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Reported Optimal Decision Variables for Small Instance
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Pareto Front Point Estimates for Small BIC, SP and
GSP Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Larger Instance Testing: Categorical Factors on
Clustering of Types in Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Larger Instance Testing: Possible Nation Distributions
Over Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 Composition of Nation Distributions in Populations . . . . . . . . . . . . . . . . . 60

10 Decision Variable Values, Objective Function Values
and Computational Effort in the 12 Player, 5 Type
Block Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



ON PROPORTIONATE AND TRUTHFUL INTERNATIONAL ALLIANCE

CONTRIBUTIONS: AN ANALYSIS OF INCENTIVE COMPATIBLE COST

SHARING MECHANISMS TO BURDEN SHARING

I. Introduction

During the 2016 presidential campaign, NATO saw the reemergence in the Amer-

ican collective consciousness of a contentious topic from which it has been plagued

since its formation: burden sharing. While the relevance of the alliance has not al-

ways been similarly questioned, the debate pertaining to the allocation of burdens

and responsibilities has remained a concern among member nations, as witnessed by

decades of negative media coverage concerning failures to meet the 2% of GDP de-

fense spending requirement. However, measuring the fairness of an alliance’s burden

sharing can be obfuscated by considering metrics individually. For example, con-

tradictions emerge when evaluating a subset of NATO’s eleven existing metrics to

ascertain a member state’s contribution. Denmark has recently failed to meet both

the 2% of GDP defense expenditure and the 20% of GDP Research and Development

requirements, but it outperforms many other allies in contributions to recent conflicts

[North Atlantic Treaty Organization, 2016]. Likewise, the United States continually

surpasses these specific requirements, but it receives a substantive discount in its

monetary contribution to the NATO common budgets. The American economy ac-

counts for over 40% of the alliance’s total GDP sum, but the United States is only

required to provided 22.14% of the common fund budgets. When contributions are

considered based upon common fund budgets and the size of each nation’s economy,

Germany bears the largest proportional share [Mattelaer, 2016]. Thus, depending
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on which metrics are utilized, differing conclusions can be drawn regarding which

country is or is not assuming its proper share of the collective burden. To this end,

we focus on the sharing of alliance requirements such that the allocations exhibit a

form of fairness as defined using coalitional game theory, and that it is in the best

interest of member nations to honestly and transparently reveal their perception of

the alliance’s value. We will utilize the game theoretic notion of the core, removing

emphasis on individual metrics, and replacing it by focusing on whether the country

has incentive to be in the alliance. Should such incentive exist, we seek for nations

to honestly report the maximum they are willing to contribute based on their own

valuation of the alliance, rather than meet a goal from the central authority which

may underestimate or inflate a nation’s burden share. Specifically, we aim to achieve

these goals with smaller regional, international alliances rather than larger, global

alliances.

Whereas, the difficulties in allocating contributions among alliance members is

apparent, history indicates the growth in prominence of interstate partnerships posi-

tively correlates with improving regional stability. An example of this can be observed

within the context of the European Union. Born from the 1951 Schuman Plan, a sim-

ple economic agreement between six European countries gradually transformed into

the European Economic Community in 1958 and to the 28-member European Union

(EU) in 1993. The scope of the EU today has expanded from its humble beginnings

as an economic partnership to encompass a melange of policy areas from climate,

environment, and health to external relations and security, justice, and migration

[European Union, 2016]. Differing views exist on the effectiveness and worth of EU

policy in the region, but there can be little doubt that the EU is the preeminent

regional, interstate partnership in the world.

Many regions throughout the world have labored to mimic the efficacy of the Euro-

2



pean Union, albeit with varying levels of success. Since the dissolution of the Spanish

colonial footprint in the Americas during the mid-19th century, Latin America has

never experienced an epoch of lasting regional stability. The United States’ south-

ern neighbor, Mexico, can be viewed as an exemplar of this instability. After eleven

years of revolution, Mexico gained its independence in 1821 and, in the decades that

followed, suffered a variety of civil and international wars, including the Texas War

of Independence and the Mexican American War. Between 1833 and 1855, Mexico

experienced 36 changes in the presidency. The Second Franco-Mexican War in 1862

installed an Austrian Hapsburg prince, Maximilian I, as emperor. This short-lived

empire ceded way to the forty-year reign of dictator General Porfirio Diaz, which

ended due to the Mexican Revolution and culminated in the uninterrupted line of

presidents from the Partido Revolucionario Institucional (PRI) until 2000 [Krauze,

1998]. This Dictadura Perfecta (Perfect Dictatorship), as coined by Mario Vargas

Llosa, and the presidency’s transfer to the Partido Accion Nacional (PAN), arguably

helped set the conditions that enabled the brutal confrontations with narcoterrorist

that the country faces today [Grillo, 2012].

The unfortunate truth is that Mexico’s tumultuous history is not unique in the

region. Similar historical accounts can be seen throughout Latin America. Chile

and Uruguay, currently bulwarks of South American democracy, were only within

the last fifty years able to rid themselves of the dictatorial regimes of Pinochet and

Bordaberry. We could expand this list even further should we include Panama’s

Noriega or Cuba’s Batista. However, this political instability is not isolated to the

past. Current regimes, such as those in Venezuela and Cuba, illustrate that dictatorial

forces can still thrive in the region. Moreover, many democracies in Latin America are

weak, lack political support, and are corrupt. These political realities, exacerbated

by other major social problems, can create the conditions in which violence and
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instability multiply. Malva Salvatrucha (MS-13), Barrio 18, and similar gangs plague

society and made El Salvador the per capita murder capital of the world in 2015 [The

Economist, 2016a]. Mexican narcoterrorists have waged war against a government

that has struggled to contain them. In fact, evidence suggests Mexican drug cartels

have facilitated the acquisition and smuggling of weapons by Hezbollah operatives into

the United States, threatening to convert regional instability into global instability

[Bartell & Gray, 2012].

In an effort to unite the region, multiple Latin American interstate partnerships

have been created. The Organization of American States (OAS) includes 35 American

sovereign nations and lists among its objectives (1) strengthening the peace and secu-

rity of the continent, (2) promoting and consolidating representative democracy, and

(3) promoting through cooperative action the region’s social, economic, and cultural

development [Organization of American States, 1993]. The OAS traces its roots back

to 1890 and claims to be the oldest regional institution in the world. However in the

last twenty years a variety of competing organizations have emerged. Another orga-

nization known as Union of South American Nations (UNASUR), comprised of only

twelve South American states, has very similar objectives and was formed in 2010.

The most significant differences between the two are the primary sources of funding

and the member nation composition [Union of South American Nations, 2010]. Like-

wise, the Community of Latin-American and Caribbean States (CELAC), formed in

2011, also mirrors OAS objectives and has a similar composition, but with the exclu-

sion of the United States and Canada [Community of Latin American and Carribean

States, 2011]. The Caribbean Community (CARICOM), an alliance composed of

primarily Caribbean island nations such as Haiti and the Dominican Republic, lists

among its ten objectives (1) to affirm the collective identity and facilitate social co-

hesion of the people of the community, and (2) to ensure that social and economic
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justice and the principles of good governance are enshrined in law and embedded

in practice [Carribean Community, 2014]. Article 4 of the Treaty of Basseterre lists

overlapping objectives for the Organization of Eastern Caribbean States (OECS), for

which membership is fundamentally a subset of CARICOM [Organization of Eastern

Carribean States, 2014]. The lines of distinction and separation of purposes become

even less distinct when other interstate partnerships such as the Latin American

Integration Association (ALADI), the Andean Community (CAN), the Association

of Caribbean States (ACS), the Central American Integration System (SICA), the

Amazon Cooperation Treaty Organization (ACTO) and others are examined as a

whole.

The emergence of a single Latin American regional alliance is hampered by dif-

ferences arising from disparate economies, ethnic makeups, and historical tensions,

much as the European continent was, albeit without the specter of two world wars

to promote regional unity. However, the world is observing a global resurgence of

nationalism. The Economist [2014] noted this worldwide surge by citing the election

of Indian Prime Minister Narendra Modi, often referred to as a Hindu nationalist;

public support for France’s National Front; and a Scottish movement which nearly

separated it from the United Kingdom. This global trend has not subsided through

2016, as evidenced by both the Brexit referendum, and the French elections. The

recently inaugurated American president, Donald Trump, has effused a distinct ap-

proach to foreign policy unlike any president since the second world war, creating a

general mood of uncertainty in the international community [The Economist, 2016b].

In such an environment, alliances of all types are likely to be questioned for relevance

and their funding structure scrutinized.

In general, the identification and implementation of an effective mechanism to fund

an interstate organization is an essential task. Two common motifs exist across many
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alliances and international agreements. The first, typically practiced in humanitarian

organizations, is the voluntary solicitation of funds. In such a mechanism the orga-

nization’s funding is, in effect, tithed without any strict requirements. The United

Nations Office for the Coordination of Humanitarian Affairs (OCHA) is one such

example. OCHA provides humanitarian aid worldwide. Only 5% of OCHA funding

comes from the UN regular fund. The remainder of the budget is provided by char-

itable contributions from governments, non-government agencies, and other private

entities [United Nations Office for the Coordination of Humanitarian Affairs, 2016a].

Two monetary funds managed by OCHA, country-based pooled funds (CBPFs), and

the United Nations Central Emergency Response Fund (CERF), comprise the re-

maining resources utilized to complete its mission. In CBPFs, donors allocate an

amount for country-specific relief in coordination with OCHA. The CERF aggregates

donor contributions - mainly from governments but also from foundations - that can

be used for worldwide disaster relief [United Nations Office for the Coordination of

Humanitarian Affairs, 2016b]. However, for alliances pertaining to military or trade

with larger budgetary requirements, a charitable donation method is less likely to

generate the requisite funds and, by design, is unable to enforce a fair burden sharing

methodology.

The second form of funding, as utilized by the United Nations, the UNASUR,

the OAS, and NATO with regard to common budgets, is to allocate quotas among

countries based on their capacity to pay [Organization of American States, 2005;

Union of South American Nations, 2015]. This general process typically involves the

division of payments based upon some metric of each respective country’s economic

strength (e.g., GDP, GNP, NNP), followed by adjustments based on population and

national debt factor. The calculated quotas generally are bounded between some

maximum and minimum values, or adjustments are performed until such constraints
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are met. This methodology can be viewed as an analog of the Shapley value in coali-

tional game theory, as it attempts to fairly share payments among member states.

However, countries do not always pay their requisite quotas to the coalition, as ob-

served in Venezuela’s failure to pay its OAS quota for many years [Morello, 2016].

Moreover, Greece has recently shown that national economic figures are not necessar-

ily sacrosanct and can be falsified [Papaconstantinoy & Sachindis, 2016]. Thus, the

capacity-to-pay method may be difficult to enforce and its underlying principles are

subject to manipulation. In fact, neither of the two discussed funding methodologies

serve to adequately solicit a country’s true valuation of the alliance, as there exists

the ability to withhold funds or act deceitfully with little consequence.

In the current research, we explore mechanisms that systematically share the bur-

den of an alliance to each member country according to their reported reserve prices

(i.e., the maximum the country is willing to contribute to the alliance). While, in our

context, an agent (i.e., a country) is actually a collection of people and the agent’s val-

uation is generally itself a social choice function, we will assume this value has already

been determined. In this way, a country is asked to reveal its reserve price valuation

of the alliance, and the mechanisms are designed to motivate honest declarations. We

assume the leadership of an alliance is independent and credible. Alliance policies

are therefore unbiased and enforceable. Assuming perfect inspection for this initial

research, we formulate three multiobjective nonlinear programs for which the deci-

sion variables represent inspection probabilities and deception penalties. Any feasible

solution constitutes a budget balanced mechanism in the core, wherein a collective

truthful revelation of reserve prices by all countries is a Bayes-Nash equilibrium, a

Nash Equilibrium in dominant strategies, and a collusion resistant Nash equilibrium,

respectively, for our three problem formulations. However, the optimal solution to

any of the three problems induces truthfulness while optimizing with respect to the
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alliance’s central authority preferences. We also examine the respective problems’

convexity, the ability of multiple commercial solvers to find an optimal solution, the

size limitations of solvable instances for all three problem formulations, as well as the

Bayesian Incentive Compatible mechanism on a intermediate size alliance motivated

by UNASUR.

The results of this research provide an upper bound on the effort required to

induce honesty in member nations under the assumptions of perfect inspection and

enforceable penalties such that cost shares are not explicitly set by a central author-

ity but are derived from the nation’s own valuation of the alliance. Likewise, we

present a new reformulation of strategyproof and groupstrategyproof mechanisms as

an optimization problem. However, the multiobjective nonlinear programs are not

specific to alliance burden sharing or even international relations. The optimization

problems presented herein are applicable to any general cost sharing problem with

perfect, probabilistic inspection effort and penalties based upon dishonest reporting

of valuations.
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II. Literature Review

This research is focused on the application of cost sharing mechanisms to funding

endogenous to the international partnerships. We begin by reviewing the fundamental

mathematical principles underlying cost sharing mechanisms: game theory, social

choice theory, and mechanism design. The study of cost sharing mechanisms is a

subset of mechanism design, a field itself which can be viewed as the intersection

of traditional game theory and social choice theory. Therefore, an understanding

of these three areas of study is critical to explain our results. Following a review

of these mathematical principles, we examine recent literature conducted on cost

sharing mechanisms and discuss the importance of both cross-monotonic mechanisms

and group strategyproofness. Finally, we conclude with a review of burden sharing

in international partnerships.

2.1 Game Theory

Rooted in utility theory’s fundamental proof that a player’s preferences for out-

comes can be represented by a scalar, game theory studies the interaction of selfish

agents to find useful solution concepts [Neumann et al., 1944]. Specifically, game

theory examines many different forms of interactions between players such as simul-

taneous actions (normal form) and sequential actions (extensive form) with varying

levels of knowledge of past moves (perfect vs. imperfect information) and player

utilities (incomplete information). Game theory can be partitioned as a discipline

based upon whether the modeling focus is the player or the group. Noncooperative

game theory describes the former whereas cooperative, or coalitional, game theory

describes the latter.

We begin by examining noncooperative games. In a perfect information normal
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form game, the most famous among all solution concepts is the Nash Equilibrium: a

set of players’ strategies from which no player benefits by unilaterally changing his

own strategy [Nash et al., 1950]. The strength of the Nash equilibrium as a solution

concept is its existence in every game having a finite number of players and action

profiles. Other well studied solution concepts include the minimax and the maximin

strategies, wherein a player’s action respectively minimizes his opponents maximum

payoff or maximizes his own minimum payoff. In fact, the Minimax Theorem proves

that, in two player zero-sum games, all three of these solution concepts coincide

as the same strategy set [Neumann et al., 1944]. Further solution concepts such

as Evolutionary Stable Strategies and ε-Nash equilibriums have refined the Nash

equilibrium to specific requirements in normal form games. An evolutionary stable

strategy strengthens the Nash equilibrium by requiring that no player benefit by

changing strategies and players are all strictly better off by keeping the specified

strategy [Shoham & Leyton-Brown, 2008; Smith & Price, 1973]. In contrast, an ε-

Nash equilibrium weakens this constraint and specifies a strategy profile such that

no player can gain more than a very small ε-amount of utility by changing strategies

[Shoham & Leyton-Brown, 2008].

Beyond the perfect information normal form games, there exists a genre of games

known as extensive form, with either perfect or imperfect information. Extensive

form games introduce a temporal element missing in the simultaneous play of normal

form games. In extensive form games, players move sequentially and, depending on

whether the game is one of perfect or imperfect information, have varying amounts of

information about preceding moves. Perfect information games assume players have

accurate knowledge of all previous decisions. In analyzing such games, the Subgame

Perfect Nash Equilibrium (SPNE) is a fundamental tool [Selten, 1965]. The concept

of an SPNE draws on the fact that an extensive form game can be represented as
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a game tree starting with the first player’s decision at the root node, branching at

successive players’ decisions until the last round of play results in utilities identified

for each player at a leaf (terminal) node. An SPNE is a strategy profile wherein, if

the game tree is cut at any level (forming a subgame), the corresponding actions in

the strategy profile correspond to a Nash Equilibrium for the subgame. Imperfect

information extensive form games, introduced by Kuhn in 1953, imply that a player

does not possess knowledge of all previous moves taken; he is unaware of his location

on the game tree [Kuhn, 1953]. For this reason, SPNEs are an inadequate solution

concept for this scenario, as a set of subgames may be indistinguishable from one

another. In fact, the näıve application of SPNEs rules out all possible strategies

[Shoham & Leyton-Brown, 2008]. Thus, in studying imperfect information extensive

form games with perfect recall, sequential equilibrium specifying a strategy and belief

distribution have proven to be very effective tools [Kreps & Wilson, 1982].

Perhaps the set of games most pertinent to the current research is that of Bayesian

games, also known as incomplete information games. In this context, a group of

players has knowledge of the strategy space available to all players but does not know

for certain each player’s utility of any outcome (i.e., each player’s type is unknown).

Equilibrium is usually computed via the Bayes-Nash solution concept for such games

[Harsanyi, 1967]. In a Bayes-Nash equilibrium no player’s expected utility increases

by changing his own strategy under his beliefs of other players’ strategies. This

equilibrium concept is utilized when expected utility is calculated as ex-ante or ex-

interim, wherein a player has no knowledge of any other player’s type, but does have

knowledge of only his own type. Utility can also be calculated ex-post such that every

players’ type is public knowledge. The solution concept utilizing this form of utility

expectation is called ex-post equilibrium and is similar to Bayes-Nash equilibrium

except for its use of ex-post expectation [Shoham & Leyton-Brown, 2008]. Ex-post
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equilibrium is a stronger condition than Bayes-Nash, but it does not have the same

existence guarantees present under the ex-ante assumption.

Transitioning to coalitional game theory, the primary questions addressed are

what subset of players will form a coalition, whether the coalition is stable, and how

the coalition should divide its transferable utility among its members. The question

of equitable division of the utility has been famously addressed via the Shapley value

[Shapley, 1988]. The Shapley value captures the average marginal contribution of each

agent and distributes the payoff accordingly [Shoham & Leyton-Brown, 2008]. While

it answers the question of payment allocation, it does not provide any guarantee

of coalition stability. That is, if the Shapley value is calculated and implemented

for the grand coalition, there is no guarantee the coalition is stable. This stability

question has been answered by a variety of concepts. The core of a coalitional game

is the set of all payoffs such that no sub-coalition has an incentive to deviate from

the current coalition [Gillies, n.d.]. It can therefore be viewed as an extension of

Nash Equilibrium to the coalitional game setting. However, there is no guarantee

that the core of a coalitional game is not empty. For this reason, the ε-core, where

no subcoalition gains more than ε-amount of utility by deviating, and the least core,

the smallest ε-valued ε-core that exists for a game, have been developed. If ε is too

small, the ε-core may still be empty. However, the least core will never be empty as

it comprises the set of vectors that solve the ε-value minimization problem [Shoham

& Leyton-Brown, 2008].

2.2 Social Choice Theory

The theory of social choice concerns the aggregation of individual preferences in

a society essentially from a coalitional game theoretic perspective. That is, social

choice theory is concerned with the maximization of social welfare. However, it is as-
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sumed all agents freely reveal their preferences truthfully and are therefore not selfish.

Social choice theory models the action of a central authority seeking to accumulate

the information provided by the agents in a logical and coherent manner to make a

decision. The central authority will return either a single outcome via a social choice

function or a ranking of all outcomes via a social welfare function developed from

some voting scheme (e.g., plurality voting, cumulative voting, and Borda voting). An

ideal social choice function is weakly Pareto efficient, monotonic, and nondictatorial

[Shoham & Leyton-Brown, 2008]. That is, the social choice function will not select

an outcome that is dominated by another outcome, its selection remains the same as

more supporters of the choice are added, and no single voter completely determines

the central authority’s selection. Unfortunately, all three of these conditions cannot

be met simultaneously. It has been proven that a Pareto efficient and monotonic

social choice function must be dictatorial [Muller & Satterthwaite, 1977]. A similar

result holds for social welfare functions in that they cannot be simultaneously Pareto

efficient, independent of irrelevant alternatives (i.e., dependent only on the relative

ordering given by agents), and non-dictatorial when there exists more than two alter-

natives [Arrow, 1970]. Both of these impossibilities are often addressed by relaxing

the appropriate Pareto efficiency, independence of irrelevant alternatives, or mono-

tonicity requirements. Moulin demonstrated two such approaches for social welfare

functions by restricting preferences to be single peaked and by restricting the social

welfare relation to be only acyclic [Moulin, 1994].

2.3 Mechanism Design

Mechanism Design can be viewed as the intersection of game theory and social

choice theory. We are still concerned with a central authority making a decision using

players’ declared preferences, but now under the assumption that each player is mo-
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tivated by self-interest. Players may hide their true preference values if they perceive

doing so will improve their individual outcome that results from a central authority’s

decision. Mechanism design works in a Bayesian setting wherein there exists a finite

set of players, a set of outcomes, a set of possible player types, and a utility function

for each player. When this Bayesian setting is combined with the mechanism (i.e., a

set of actions available to the agents, and a mapping of action profiles to outcomes)

the result is a Bayesian game. The mechanism is designed to induce desirable traits in

the solution(s) to the Bayesian games [Shoham & Leyton-Brown, 2008]. For instance,

the central authority may wish that the Bayesian game implements a particular social

choice function in dominant strategies, in a Bayes-Nash Equilibrium, or in an ex-post

equilibrium. Alternatively, the central authority may wish that the mechanism in-

duces all agents to take non-deceptive actions (truthfulness), maximizes the sum of

all players welfare (efficiency), or makes neither a profit or a loss (budget balanced).

A fundamental theorem in mechanism design, the revelation principle, relates the

implementation of a social choice function to truthfulness. It states that, if there

exists a mechanism implementing a social choice function, there exists a direct and

truthful mechanism that does the same [Gibbard, 1973]. This theorem enables the

action space postulated in a mechanism to be restricted to only direct actions (i.e.

actions wherein the player only reports his preference). Any solution to a mechanism

design problem can be converted into one in which agents always reveal their true

preferences [Shoham & Leyton-Brown, 2008]. In terms of mechanism implementa-

tion, dominant strategies implementation is the strongest, but it has been proven

that any mechanism implementing a surjective social choice function having at least

three outcomes that is dominant strategy truthful is also dictatorial [Satterthwaite,

1975; Gibbard, 1973]. Similarly, no strategyproof mechanism (i.e., one in which truth-

telling is a dominant strategy) can simultaneously be efficient and budget-balanced
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[Green & Laffont, 1977].

In the setting of quasilinear preferences (transferable utility), the Vickery-Clarke-

Groves (VCG) mechanism is well studied and has beneficial properties [Vickrey, 1961].

The VCG mechanism is a direct mechanism that is strategyproof and efficient. Effi-

ciency is maximized by selecting the combination of reported valuations which max-

imizes the social welfare of the group. Truthfulness is then enforced through a (po-

tentially positive or negative valued) payment to each agent that does not depend

on his own valuation [Vickrey, 1961; Clarke, 1971; Groves, 1973]. Although the VCG

mechanism has been proven to be the only directly implementable mechanism that is

both truthful and efficient, it is also known to be susceptible to collusion (i.e., it is not

group strategyproof) and expensive to implement [Green & Laffont, 1977; Shoham &

Leyton-Brown, 2008].

Essentially, mechanism design problems are optimization problems wherein the

parameters are privately held information. Vohra demonstrates how incentive com-

patibility, revenue maximization, the core, and efficiency can be formulated using

linear programming techniques and network models [Vohra, 2011]. His work is our

primary motivation for the application of traditional operations research techniques

to mechanism design problems.

2.4 Cost Sharing Mechanisms

Mechanisms designed to share the price of a good or service among many players

are called cost sharing mechanisms. Research is focused on developing mechanisms

that prescribe desired behavior for rational agents. These cost sharing mechanisms

implement an underlying cost sharing function and are typically constrained by some

variation of budget balance, no positive transfer (bidder is not paid to not receive

a service), individual rationality (a player does not receive negative utility from not
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playing), and voluntary participation (players payment doesn’t exceed his bid) restric-

tions. The Shapley value mechanism and the VCG have been applied successfully to

such problems [Shoham & Leyton-Brown, 2008]. In both of these cost sharing mech-

anisms, the goal of strategyproofness is accomplished. No single agent is able to

deviate unilaterally and increase his utility. However, individual strategyproof mech-

anisms are susceptible to collusion. It is possible for groups of agents to coordinate

their actions in such a way that truthfulness is not a dominant strategy. Mechanisms

that are resistant to collusion are called group strategyproof if no subset of players

can gain utility by collusion without hurting a member of the same subset. A further

consideration is the inclusion of the cost sharing mechanism in the core. Cost sharing

mechanisms implementing a cross monotonic cost sharing function will exist in the

core whereas, for combinatorial optimization games, the core is non-empty only if

the problem is unimodular (i.e., the linear program relaxation of the integer program

corresponds to an integer valued basic feasible solution) [Deng et al., 1999].

The study of group strategyproof mechanisms was first accomplished by Moulin

[Moulin, 1999; Moulin & Shenker, 2001]. It was shown that if the underlying cost

sharing function is cross-monotonic and budget balanced (i.e., no player is made to

pay more as the size of the coalition increases and the cost is met exactly), there exists

a group strategyproof mechanism in the core to implement it. Therefore, the mecha-

nism induces a stable cost sharing scheme wherein a subset of colluding players will

not all benefit. In a subset of colluding players, at least one of them will be impacted

negatively from this action. This notable result has been extended by many authors

and, for a number of years, was the only known method for constructing group strat-

egyproof mechanisms. While the underlying structure of group strategyproof budget

balanced cost sharing mechanisms was explored and defined, it remained an open

question as to whether there existed another method beyond Moulin mechanisms
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[Penna & Ventre, 2006]. Moulin mechanisms, as they have come to be known, can be

thought of as an iteratively ascending auction. In each iteration, players are simul-

taneously offered the same price. If a player refuses in a given iteration, the offered

price is incremented and offered to the remaining players [Tazari, 2005; Mehta et al.,

2009]. The mechanism terminates when all players accept a given offer. Moulin mech-

anisms have been successfully applied to many situations, including cost sharing in

the electronic market place [Li et al., 2003]. However, in some situations cross mono-

tonicity severely limits the effectiveness of a mechanism. Li et al. (2010) introduced

a cross monotonic cost sharing scheme for the set covering problem, but it is not

budget balanced and is limited to recovering at most 1
2n

of the group cost [Li et al.,

2010a,b]. In fact, utilizing the results of Jain & Vazirani [2001] that show Moulin’s

theorem holds for α-budget balanced cost sharing schemes, it has been shown that

cross monotonic cost sharing functions for the vertex cover and set cover problems

can recover at most 3
√
n and 1

n
of the group cost, respectively. In contrast, Moulin

mechanisms for the facility location game were shown to recover at most 1
3

of the

group cost [Jain & Vazirani, 2001; Immorlica et al., 2008].

The poor budget balance results motivated researchers to relax the core and group

strategyproof attributes of Moulin mechanisms to an approximate level in an effort

to increase the budget balance factor. Acyclic mechanisms represent one such ef-

fort. These mechanisms, similar to Moulin mechanisms, can be understood as an

iteratively increasing auction, but they differ in the price offering method. Whereas

Moulin mechanisms simultaneously offer a price share to all participants, acyclic

mechanisms do so in sequence. Once a player refuses an offer, the iteration termi-

nates and the price share increases. All players who have not yet rejected a proposal

are then offered the new price in sequence. The mechanism continues in this way until

all players accept the offered price. While it has been shown that acyclic mechanisms
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generalize Moulin mechanisms when a null timing function is input (i.e., all players

are offered a price share simultaneously), acyclic mechanisms generally have weaker

guarantees with regard to group strategyproofness. Specifically, acyclic mechanisms

are individually strategyproof but weakly group strategyproof. That is, a subset of

colluding players cannot all benefit, as some of the colluding players will remain indif-

ferent between selecting a truthful or a colluding strategy. Although this is a weaker

guarantee than group strategyproofness, the combination of the non-decreasing na-

ture of offered price shares and the timing function allows acyclic mechanisms to

utilize cost sharing functions that are not cross-monotonic. Many primal-dual algo-

rithms naturally induce acyclic mechanisms having better performance guarantees

than Moulin mechanisms in terms of social welfare maximization and budget balance

[Mehta et al., 2009]. In fact, acyclic mechanisms for the set cover game and facility

location game have been implemented and recovered 1
logn

and 1
1.861

of the respective

group cost [Devanur et al., 2005]. Brenner & Schäfer [2009] have since demonstrated

a method for turning any α-approximate algorithm into an α-approximate budget

balanced mechanism.

Egalitarian mechanisms are a subclass of acyclic mechanisms. Egalitarian mech-

anisms find the most cost-efficient subset of players that have not been assigned a

cost share and then charge the players in the set an identical minimum marginal

cost. This process continues until all players have been assigned a cost. Egalitarian

mechanisms are powerful as they possess a stronger notion of collusion protection

than weak group strategyproofness. Egalitarian mechanisms have been proven to

possess the property of weak group strategyproofness against collectors. This form

of collusion protection strengthens weak group straegyproofness by the notion that

all players prefer receiving service at their valuation price over not receiving it at all.

It has been proven that the set of acyclic mechanisms also possesses the property of
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weak group strategyproofness against collectors [Bleischwitz et al., 2007].

Upon researching the effects of relaxing the requirements of Moulin mechanisms

to improve budget balance and social welfare, it was discovered that group strat-

egyproof mechanisms can be implemented with underlying cost functions that are

not cross monotonic. Instead, group strategyproof mechanisms need only satisfy the

weaker notion of fence monotonicity. Cross monotonicity refers to the properties of

the underlying cost function, whereas fence monotonicity pertains only to the allo-

cated price shares. A group strategyproof mechanism is completely characterized by

satisfying fence monotonicity, combined with the stability of its allocations and the

validity of a tie-breaking rule [Pountourakis & Vidali, 2010]. A fully budget balanced

group strategyproof mechanism for the unweighted edge cover problem has been cre-

ated based upon the concept of fence monotonicity [Immorlica & Pountourakis, 2012].

This finding represents a substantial improvement from the previously proven upper

bound of 1
2
-budget balanced for cross monotonic group strategy proof mechanisms.

In the same paper, an upper bound of 18
19

budget balance is provided for the fence

monotonic mechanism in the set cover problem, improving upon the 1
n

upper bound

for Moulin mechanisms.

The aforementioned cost sharing mechanisms approach the problem in a coali-

tional game theoretic manner. In such a scenario, there exists an implicit assumption

that a central authority exists to facilitate the players’ interaction. Decentralized

environments for which no central governing body exists have been modeled utiliz-

ing techniques from non-cooperative game theory. In many situations, such as those

often considered by computer science pertaining to the Internet, a centralized model

for cost sharing is impossible to implement. Cardinal & Hoefer [2010] considered a

vertex cover game wherein each player is responsible for a subset of edges on a graph.

Each player insists upon all of his edges being adjacent to at least one node. In this
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way, the players can be considered to be owners of related constraints in the vertex

cover integer program formulation. The authors only considered pure strategy Nash

equilibrium and analyzed the game primarily with regards to the price of anarchy

and the price of stability, i.e., the ratio of the worst and best Nash equilibrium to the

solution which maximizes social welfare. As pure strategy Nash equilibrium are not

always guaranteed to exist, the authors utilize approximate (α, β)-Nash equilibrium

and introduce algorithms for finding them in multiple classes of problems, including

the use of primal dual algorithms. Other works have analyzed the effect of signaling

or analyzed covering games with a low price of anarchy [Balcan et al., 2014; Piliouras

et al., 2015]. However, one of the most significant works in the area exposed the

relationship between non-cooperative cost sharing and coalitional cost sharing mech-

anisms. If a strong Nash equilibrium exists in the strategic (non-cooperative) form of

the game, then the coalitional form of the game has a non-empty core [Hoefer, 2010].

While the reverse is not always true, the conditions under which strong equilibrium

in cost sharing games exists has been codified [Epstein et al., 2009].

2.5 Burden Sharing in International Affairs

Whereas cost sharing mechanisms adopt a prescriptive approach, the political sci-

ence and economics literature generally adopt a descriptive approach to address the

problem of burden sharing within nation-state alliances. Research on burden sharing

in international affairs relates to the amount of absolute and relative contributions

by players, typically countries, to the financing of a public good. Public goods are

not divisible and are not excludable. Cost sharing mechanisms specific to public

goods have been researched extensively in the literature. Jackson & Moulin [1992]

consider the sharing of cost for an indivisible public project among many players,

and their work was extended by Bag [1997] to account for a divisible project (im-
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pure public good) and freeloaders. However, the most prevalent example of a public

good is national defense, and it is to this end that the majority of burden sharing

research literature is applied. NATO specifically has garnered much attention in this

area. Olson & Zeckhauser [1966] outline a model explaining the contributions of

countries to a coalition with specific emphasis on defense alliances. This model was

then empirically compared with 1965 NATO funding levels to confirm the thesis of

the exploitation of the great by the weak. That is, the model explains the dispropor-

tionate investment of large countries (in terms of population or GNP) to NATO. Kim

& Hendry [1995] conduct a thorough survey of burden sharing research specific to

defense alliances and find two major quantitative methods for approaching the prob-

lem: (1) economic/political analysis of alliance burden sharing, and (2) operations

research analysis. While Kim and Hendry also address economic/political analysis

of individual country’s defense expenditures, the research in this area is much more

qualitative. The following publications are exemplars of Kim and Hendry’s aforemen-

tioned quantitative categories. Weber & Wiesmeth [1991] create an economic model

of NATO, expanding upon Olson and Zeckhauser, applying a cost sharing mecha-

nism to extract each player’s payment, which is a quasi-egalitarian equilibrium and

in the core. The mechanism is stable, efficient, and budget balanced. However, by

the results of Green & Laffont [1977] it cannot be strategyproof. Their research also

demonstrated how nonlinear defense expenditures can contradict the results of Ol-

son & Zeckhauser [1966]. The operations research analysis of burden sharing is best

exemplified by Hens et al. [1992] who apply a multi-criteria decision making model

to identify each country’s percentage burden share for the alliance. Their method

can be viewed as an effort to generalize traditional practices currently imposed by

the UN and the OAS. A set of representative criteria for burden sharing is selected,

such as GNP and national debt as used by the UN, and percentage burden shares
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are subsequently allocated by the model. Notably, all of the aforementioned methods

model nations as individual actors, masking the effect of their respective populations.

Boadway & Hayashi [1999] recommend an alternative approach which assumes that

nations act to maximize the utility of their populations and confirms Olson and Zeck-

hauser’s exploitation of the great by the weak hypothesis. Gupta et al. [2012] and

Gupta [2014] utilize a sequenced voting scheme to invoke the efficient provisioning of

international security under exogenous and endogenous threats.

The emphasis in burden sharing on defense alliances, and NATO in particular, is

likely due to the global security environment at the time of each literature’s publi-

cation, primarily during the Cold War. However, as noted by Chalmers [2001], the

dominance of the military dimension in burden sharing is subsiding. Other public

goods, such as financing EU enlargement, foreign aid to third world countries, and

climate change, are beginning to gain preeminence. This reality is beginning to be-

come apparent in the burden sharing literature as well. Böhringer et al. [2015] have

produced one of the first examples analyzing the effect on the Canadian economy

of six different mechanisms sharing the carbon emissions reduction burden among

provinces per the Copenhagen Accord. However, many research opportunities re-

main pertaining to burden sharing within non-defense related alliances.

22



III. Methodology

In this section, we describe the proposed cost sharing mechanisms, introduce requi-

site terminology and parameters, and identify multi-objective nonlinear programming

optimization formulations that identifies mechanism thresholds yielding various guar-

antees of truthfulness. Specifically, we introduce constraint sets that can be utilized

by the mechanism designer to implement the cost sharing function in a Bayes-Nash

equilibrium, and in dominant strategies with or without collusion resistance, respec-

tively. The intent is to provide a framework with which a central authority can select

inspection and penalty thresholds to deter deceptive actions.

3.1 Mechanism Intuition

Funding methods utilized by international organizations generally do not assess a

country’s value of the alliance directly. Instead, some sort of equitable price share is

often developed based on a capability-to-pay method which utilizes national economic

indicators and national debt as input variables. This method ignores any strategic

importance the country may place on being in the alliance. Therefore, we propose

a direct mechanism that asks each nation to reveal their valuation of the coalition.

A cost sharing function then utilizes all member nations’ reserve prices to determine

their respective cost shares. We will define the valuation, or type, of each nation by

their reserve price in terms of the percentage of the total alliance cost. We assume

each country’s valuation of the alliance is computed rationally using the principles of

decision theory to balance internal and external risks/rewards (i.e., domestic political

environment or aggressive responses by nonmember states).

Should the mechanism be left as such (i.e., each nation is only asked to reveal their

reserve price), a country is generally incentivized to underreport their true valuation
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if it believes other member states will sufficiently fund the endeavor. To deter such

deception, the mechanism requires an enforcement protocol. The proposed enforce-

ment protocol is a probabilistic inspection action by the central authority combined

with a penalty imposed on any country found, via inspection, to be untruthful. Each

bid in a countable valuation space will be probabilistically inspected independent of

other valuations. For this study, inspection by the central authority is assumed to

be perfect and without cost. That is, if the central authority decides to inspect a

country, it is guaranteed to identify the nation’s true type and the inspection action

has neither a fixed nor a variable cost. The mechanism will allow truthful countries

to be eligible for a subsidy and deceptive countries to be vulnerable of a penalty. If

a country is found to be deceptive, the bid will be corrected to the true value and a

penalty will be assessed. Countries that have not been labeled as deceptive will be

rewarded, as the sum of deception penalties assessed will be equitably distributed as

a subsidy among them.

Under the premise of perfect inspection, it becomes obvious that a probability

one of inspection and/or a sufficiently large penalty for deceptiveness will incen-

tivize truthfulness. Such an authoritarian enforcement protocol may be damaging

to the alliance and difficult to enforce. Therefore, we desire to minimize inspection

probabilities and the magnitudes of deception penalties while maintaining some form

of truthfulness and budget balance. Likewise, the stability of the grand coalition

is paramount. If the cost sharing mechanism induces instability, the international

alliance itself is at risk of dissolution. We address such concerns utilizing a cross-

monotonic cost sharing function to ensure a core allocation. However, the ensuing

cost sharing mechanism can also allow for the alliance to go unfunded, in effect dis-

solving, if after inspection the sum of updated reserve prices is less than the total

cost of the alliance. In such a scenario, the assessment is that the alliance has not
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garnered sufficient support to continue. However, to maintain truthfulness, penalities

and subsidies would still be assessed in such a situation.

The central authority provides a set of declarable reserve prices and a set of

distributions for each country over them. This fact, combined with the stochastic

inspection, signifies the mechanism induced game is a single stage Bayesian stochastic

game. All of the ensuing mechanisms will utilize the expected cost share and penalty

sum from a declaration as the measure of an action’s utility. However, the three

mechanisms differ in how the Bayesian nature of the game is managed.

3.2 Bayesian Incentive Compatible Formulation

We begin the discussion of our multi-objective nonlinear optimization problem

formulations by introducing the requisite sets, parameters, and decision variables in

our international alliance setting.

Sets and Parameters

• Φ = {φ1, φ2, ..., φn} : the set of all n possible types (valuations) in a

common pool available to be the declared or truthful type of a nation.

• M: the set of m countries in the alliance.

• C: a set of colluding countries such that C ⊆ M.

• θ = {θ1, θ2, ..., θm}: the true type vector of the m players, wherein θj ∈ Φ,

for j = 1,2,...,m, and where Θ = Φm is the set of all possible true type

vectors of the nations in the alliance.

• S = {s1, s2, ..., sm} : the declared type vector of the m players in the

alliance, wherein sj ∈ Φ, for j = 1,2,...,m, and where S = Φm is the set of

all possible declared type vectors of the nations in the alliance.
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• W = {w1,...,wt}: the vector of inspected types such that W ⊆ Φ

• SW = {sW1 ,...,sWm }: the vector of corrected player types of S after inspec-

tions of declarations in W, wherein sWj ∈ Φ, for j=1,2,...,m.

• αθi,j: the probability that the j th player is truly type θi.

• βθ−j
: the probability of θ−j ⊂ θ, i.e., the probability all players other than

player j have a true type, which we represent as θ−j and calculate via

βθ−j
=

∏
k=1,2,...,n

k 6=j

αθk,k.

• τ : number of countries labeled as truth telling after inspection.

• σL: number of countries found underbidding after inspection.

• σH : number of countries found overbidding after inspection.

• λj: a deception coefficient such that λ > 1 indicates discomfort to decep-

tion, λ < 1 indicates comfort and λ = 1 indicates ambivalence.

• cW (sj | S−j): cost function yielding the cost share of the j th player playing

sj and all other players declaring S−j, after an inspection W has modified

S to SW . The base model will assume a proportional rule such that

cW (sj | S−j) =


sWj

m∑
k=1

sWk

, if
m∑
k=1

sWk ≥ 1

0, otherwise.

(1)

Decision Variables

• p = {pφ1 , pφ2 , ..., pφn} : the inspection probability vector, wherein, pφi

denotes the probability that a bid of type φi is inspected.

• xL: The penalty assessed to a deceptive action if sj < θj.
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• xH : The penalty assessed to a deceptive action if sj > θj.

We observe that all players’ valuations are drawn from a common pool. Individual

pools are possible and would require only minor changes to the model, but a common

pool makes the most sense for the context of our problem. Also, note that Θ and

S are identical sets representing all possible combinations of size m from Φ where

types can be repeated. A nation’s valuation of the alliance will be represented as

their reserve price in terms of the maximum percentage of the alliance the country

is willing to contribute. We assume that a country’s valuation will not exceed the

cost of the alliance, and thus, the set Φ will contain n discrete elements generally

contained within the interval [0,1]. In some context, it may also make sense to narrow

this interval via an alternative upper bound, BU , and lower bound, BL, such that 0

≤ BL < BU ≤ 1. A scenario with such bounds coincides with the UN or NATO setting

where participating countries are established by treaty, and bounds on minimum and

maximum contributions have historically been mandated.

The distinction between SW and S is necessary to adjust price shares after the

central authority has discovered deceitful action. Upon discovering deceit, the central

authority will adjust all players’ cost shares as appropriate to the updated type vector

and assess penalties and subsidies as required. Furthermore, SW will always be as

truthful or more truthful than S (i.e, SW will have greater than or equal to the

number of truthful players in S). Note that S∅ is equal to S because no inspections

have occurred.

We assume that the true type of each country is independent of the true type of any

other country. Therefore, βθ equals the product of the appropriate αθi,j variables. We

note that this simplification may not always reflect reality. Neighboring countries,

countries with strong economic ties, or countries with similar geopolitical interest

may very well exhibit correlated behavior in terms of their valuation of the alliance.

27



However, the proposed model is flexible enough that such correlation effects can be

incorporated with minor modifications.

The cost function cW (sj | S−j) represents the manner in which the price is shared

after bids have been adjusted per the inspection vector W . If the sum of corrected

values meets or exceeds the alliance cost, the alliance cost shares are proportionally

allocated as described in the top term of equation (1). Otherwise, if the corrected

values do not suffice, the alliance is not funded. It can be observed that, in our

proportional cost function, an overbid relative to a player’s true type will result in a

higher expected payment. Therefore, the additional xH penalty will be driven down

to zero in accordance with the objective functions to be introduced in equations (5)

and (6). However, the following formulations will retain xH as a decision variable to

account for cost sharing functions wherein an overbid may result in a lower expected

payment (e.g., Li et al. [2003]).

We now introduce the functions that will be utilized in a plurality of the con-

straints for the mathematical programming formulation to ensure a pure strategy

Bayes Nash equilibrium exists in the game.

Functions

• χWj (S, θ): the penalty and subsidy function associated with the inspection

W , a declared type vector S, and a true type vector θ.

χWj (S, θ) =


xL, if sj < θj and sj ∈ W

xH , if sj > θj and sj ∈ W

−(σL ∗ xL + σH ∗ xH)/τ, if sj = θj or sj /∈ W

(2)

where
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σL =
m∑
k=1

ILk

σH =
m∑
k=1

IHk

τ = m− σL − σH

and

ILj =


1, if sj < θj and sj ∈ W

0, otherwise

IHj =


1, if sj > θj and sj ∈ W

0, otherwise.

• a(sj, p, xL, xH | S−j, θ): the expected allocation function computes the

expected cost share of the j th player assuming he plays sj, given the other

players declared types and the true type vector. The function has the

following form:

a(sj , p, xL, xH | S−j , θ) =
∑
W⊆Φ

[cW (sj | S−j) + χWj (S, θ)]
∏

i=1,2,...,n
φi /∈W

(1− pφi)
∏

i=1,2,...,n
φi∈W

pφi . (3)

To increase or decrease a country’s cost share after the adjustments of the in-

spection action, the penalty and subsidy function, χWj (S, θ) is defined. If a country

is found to be deceptive by underbidding (i.e., the nation’s declared valuation is in-

spected and its valuation is less than its true valuation), a penalty of xL is assessed.

Under parallel conditions, wherein the declared valuation is greater than the true

valuation, the country is said to have overbid and is assessed a penalty of xH . The
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number of underbidding and overbidding countries are discerned through the sum of

the indicator variables, ILj or IHj , and are represented by σL and σH , respectively. The

number of countries who are deemed to be truth telling is represented by τ . Truth

telling countries are either assessed and found to be honest or are not inspected at

all and assumed to be honest. In either scenario, truth telling nations are eligible

for a subsidy based upon the amount of penalties assessed to deceitful nations. This

subsidy is shared equally among all truth telling nations.

The expected allocation function sums over all possible outcomes of the random

variable W , ranging anywhere from no types are inspected to all types are inspected.

For an individual outcome of W , the nation will be assigned a cost share and an

appropriate penalty or subsidy. Within the summation over W ⊆ Φ in the right hand

side of equation (3), each term consists of the sum of the cost share and the subsidy

function, given a particular true type vector, declared type vector, high penalty, low

penalty, and inspection vector W , multiplied by the probability of an inspection

vector W occurring. Thus, the expected allocation function assesses the expected

burden share of player j declaring sj. For notational simplicity, we henceforth refer

to this function as a(sj | S−j, θ) because p, xL, and xH are decision variables within

the ensuing math programming formulation.

Given this requisite modeling framework, we introduce the nonlinear multiobjec-

tive optimization problem formulations associated with an international alliance cost

sharing scenario. The first formulation seeks to balance the minimization of func-

tions f(p) and h(xH , xL), whose specific forms are discussed later, while maintaining

Bayesian Incentive Compatibility (BIC) internal to the mechanism. To induce a

Bayes-Nash equilibrium, it must be assumed that the players in the partially filled

declared strategy vector, S−j, are reporting their true valuation. It is also impor-

tant to note than any feasible solution to the optimization problem is a BIC budget
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balanced mechanism, resulting in a game with a Bayes Nash equilibrium of honest

strategies for all players. However, we wish to find an optimal mechanism with re-

gard to minimizing the inspection probabilities and the magnitudes of the deception

penalties.

BIC Formulation

min
p,xH ,xL

z = (f(p), h(xH , xL)) (4a)

subject to∑
θ∈Θ

βθ−j
a(θj | S−j, θ)

≤
∑
θ∈Θ

λjβθ−j
a(sj | S−j, θ), ∀j ∈M, sj 6= θj, θj ∈ Φ,

(4b)

0 ≤ pφi ≤ 1, ∀φi ∈ Φ, (4c)

xL, xH ≥ 0. (4d)

The BIC formulation is multiobjective and can be approached utilizing any one of

the available methods in the literature (e.g., see Caramia & Dell’Olmo [2008]). It can

be observed that the first constraint set (4b) in the formulation enforces Bayesian

Incentive Compatibility, assuming ex-interim utility (i.e., a country is aware of its

own type, but not of other countries’ types). While it would be possible to approach

the problem under ex-ante assumptions (i.e., a country has no knowledge of any

country’s type), the definition of deception would become opaque if a country is not

aware of its own type. Constraint set (4b) ensures the expectation of the expected

cost share of declaring a true valuation will be less than or equal to the expectation

when misrepresenting, for each nation and true type. Feasible solutions ensure a

collectively honest declaration of worth by all nations is a Bayes Nash equilibrium. It

is also this same truthfulness constraint which induces a nonlinearity. This is readily
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noted when observing the product of multiple decision variables in equation (3). The

second constraint set (4c) ensures that all inspection probability values are valid, and

the last constraint set (4d) enforces non-negativity of the penalties.

We now introduce two potential forms of the objective function utilizing the

weighted multi-objective method.

Individual Penalty and Inspection Weights (IPIW)

In lieu of equation (4a), we define the objective function to be

z = wLxL + wHxH +
n∑
i=1

wipφi , (5)

wherein wL and wH weight the penalties xL and xH , respectively, and wi-

parameters weight the probability in which type φi is inspected, for i = 1, ..., n.

Penalty Sum and Inspection Effort (PSIE)

We replace equation (4a) with the objective function

z = wP (xL + xH) + wI

(
n∑
i=1

pφi

)
, (6)

wherein wP weights the sum of penalties and wI weights the sum of type in-

spection probabilities.

Both of these forms are advantageous in some respects and limiting in others.

When utilizing the IPIW objective function, a high degree of specification of prefer-

ences is possible. For instance, an alliance may not wish to severely punish countries

who overbid their true valuation and may accordingly place a large weight on wH .

Likewise, if we remove the assumption of cost-free inspection, this method may be

relevant and useful, especially if some bids require more inspection cost than others.

The tradeoff to the robust specification capability is the difficulty in visualization
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of the Pareto frontier in higher dimensions. The PSIE does not allow for the same

specification as the IPIW objective function, but it allows for easy visualization of

the Pareto frontier without regard to the size of the pool of potential valuations, and

so we use it herein to illustrate results.

The solution of the optimization problem will yield the inputs for the central

authority’s enforcement protocol, i.e., the penalties for deceit and the probability

of inspection for each valuation will be specified. Utilizing these inputs and the

aforementioned method of soliciting inputs with the enforcement protocol, the central

authority will have a budget balanced, Bayesian Incentive Compatible mechanism in

the core at their disposal. However, should the above methodology be altered such

that the cost function is no longer cross monotonic, there is no guarantee the resulting

cost share allocation will be in the core.

3.3 Alternative Formulations

Our two proposed alternative formulations differ only in the type of incentive

compatibility induced by the mechanism. That is, the solution to the optimization

problem will induce penalties and probabilities such that either strategyproofness or

group strategyproofness is induced.

Strategyproof Constraints (SP)

The strategyproof formulation replaces the first constraint set in the BIC for-

mulation inequality (4b) with the constraint set (7), to induce a game wherein 

every player’s weakly dominant strategy is to act honestly.

a(θj | S−j, θ) ≤ λja(sj | S−j, θ), ∀j ∈M, S−j ∪ sj ∈ S : sj 6= θj, θ ∈ Θ (7)
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Group Strategyproof Constraints (GSP)

The group strategyproof formulation replaces the first constraint set in the BIC

formulation inequality (4b) with a similar set of constraints as in the strat-

egyproof formulation, but constrains the expected contribution of groups to

ensure no player can subsidize another to be dishonest and all players benefit.

For the following GSP constraints, we must first define

• Ŝ =
⋃
j∈C

sj: the declared strategy vector of all colluding players in C.

• θ̂ =
⋃
j∈C

θ̂j: the true type vector of all colluding players in C.

• Ŝ ′ =
⋃
j /∈C

sj: the declared strategy vector of players not in the colluding set.

The following constraint set (8), when substituted in the BIC formulation for

inequalities (4b), induces a weakly groupstrategyproof mechanism:

∑
j∈C

a(θj | θ̂−j∪Ŝ′, θ) ≤
∑
j∈C

λja(sj | Ŝ−j∪Ŝ′, θ), ∀C ⊆M, Ŝ∪Ŝ′ ∈ S : Ŝ 6= θ̂, θ ∈ Θ. (8)

It can be observed that, in the strategyproof variant of the truthfulness constraints,

we are no longer concerned with the expectation of the expected cost share of player

j telling the truth. Instead, each expected cost share a(sj | S−j, θ) is considered

individually. We now specify that regardless of the true type of declared valuations of

the other players, player j ’s best response is to always tell the truth. This indicates

that for all potential games in the Bayesian setting there exists a Nash equilibrium

in weakly dominant strategies that is truth telling for all nations (adding a small

scalar ε to the right hand side of the inequality induces an equilibrium in strictly

dominant strategies). The group strategyproof variant of truthfulness expands upon

the strategyproof definition by allowing for and preventing collusion.

In the previous settings, we have assumed that no communication between agents

occurred to enable collusion. In the group strategyproof setting, it can be viewed as
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if we are allowing any subset of agents to freely communicate with each other in an

effort to coordinate their bids. The constraints in this setting will yield solutions to

the optimization problem such that the penalty and probability values associated with

deceitful action are a sufficiently large deterrent that, even with collusion, any player’s

best response remains to tell the truth for all potential games. It can be observed that

when C is a singleton set (i.e., a player is considering unilateral deception), constraint

(8) is identical to constraint (7) and will prohibit unilateral deception. Thus, the SP

constraints and contained in the GSP constraints. Consider the following example to

illustrate the difference between the SP and GSP formulations. Under joint truthful

reporting Player A and B incur a cost of 0.2, and under joint deception Player A

incurs a cost of 0 while Player B incurs a cost of 0.3. Such an outcome would not

violate (7) as the joint truthful and joint deceitful strategies are never compared.

Thus, Player A and B could benefit from collusion by splitting their joint cost (e.g.,

Player A and B both pay 0.15). Instead constraint (8) ensures the cost incurred by

any colluding subcoalition acting truthfully is less than or equal to acting deceitfully,

thereby preventing a player to benefit by subsidizing another. As in the SP constraint

set, adding a small scalar ε to the right hand side of the inequality induces a group

strategyproof instead of a weakly group strategyproof cost sharing mechanism.

The outlined frameworks allow for an international alliance to solicit and obtain

preference information from its member nations and affect a selected expectation of

truthfulness (e.g., BIC, strategyproofness, or group strategyproofness), assuming all

actors are rational. The SP and GSP formulations no longer directly depend on the

probabilities, αθi,j, but this underlying information can still be utilized by the players

to inform which game in the Bayesian setting is being played.

In some instances, the central authority may wish to avoid undesirable outcomes

from irrational agents. While the mechanisms resulting from any of the aforemen-
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tioned formulations will induce a budget balanced outcome in equilibrium, irrational

actors may cause outcomes that overcollect, pay a country to be in the alliance, or

assess penalties when the alliance is unfunded. Overcollection may occur when all

countries act dishonestly and the alliance is funded. If all countries are found to be

deceptive, no country is eligible for the subsidy and the money must either remain

with the central authority or be disposed of similar to the VCG mechanism. In the

same situation but when a small number of countries are deemed to be honest, said

countries may be positively compensated for their participation (i.e., they are paid to

be in the alliance). Finally, if declared bids do not meet the collective requirement,

the alliance may remain unfunded, and our mechanism will still inspect and assess

penalties to countries. Thereby, there exists the opportunity for honest countries to

be compensated by deceptive countries while the alliance remains unfunded. To ac-

count for the last two scenarios, we introduce a no positive transfer constraint (i.e.,

no player is paid for participating).

No Positive Transfer Constraint

a(sj | S−j, θ) ≥ 0 ∀j ∈M, θ ∈ Θ, S−j ∪ sj ∈ S,

This constraint set will prevent irrational actors from forcing the aforementioned

undesirable outcomes. However, its inclusion into the BIC, SP, or GSP formulations

may cause an instance to be infeasible.

3.4 Convexity of Formulations using BIC, SP, or GSP Constraints

The convexity of our non-linear formulations will determine the type of solution

methodologies at our disposal. Given our objective function is linear, should the

feasible region be convex, then convex optimization methods such as gradient-based

procedures can be utilized to guarantee optimality. Otherwise, a global solver or
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heuristic procedure will be required. In order for a feasible region to be convex, the

constraints when expressed in standard form (i.e., gi(~x) ≤ 0, i = 1, ...,m) must also

be convex. The literature demonstrates two popular methods to determine the con-

vexity of a function. The first method as discussed by Winston & Goldberg [2004]

utilizes the principal minors of the Hessian. The signs of the determinants of the

principal minors determine whether or not the Hessian is positive definite or semi-

definite, the former implying strict convexity of the function and the latter convexity

of the function. Similarly, Bazaraa et al. [2013] utilize an equivalent approach based

on the eigenvalues of the Hessian; a Hessian having all non-negative-valued eigenval-

ues corresponds to a convex functions, whereas a Hessian having all positive-valued

eigenvalues corresponds to a strictly convex function.

Theorem 3.4.1 The BIC formulation is a non-convex optimization problem.

Proof By contradiction, assume the BIC formulation induces a convex optimization

problem. Therefore, all of the functions comprising the BIC constraint set are convex,

such that

g
θj ,sj
j (p, xL, xH) ≤ 0, ∀j ∈M, θj ∈ Φ, sj 6= θj ,

where

g
θj ,sj
j (p, xL, xH) =

∑
θ∈Θ:sj=θj

a(θj | S−j , θ)βθ−j

− λj
∑

θ∈Θ:sj=sj

a(sj | S−j , θ)βθ−j
. (9)

Therefore, the Hessian, H
θj ,sj
j (p, xL, xH) of g

θj ,sj
j (p, xL, xH) is positive semidefinite

(i.e., having strictly non-negative eigenvalues) for any player j.

Consider a problem instance having Φ = {0.5, 0.7} andM = {A,B,C}, λj =1 for

all players, and αθi,j identical for every player strategy pair. In this setting, for Player
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A, setting θA = {0.7} and sA = {0.5}, the function g0.7,0.5
A (p0.5, p0.7, xL, xH) reduces

to g0.7,0.5
A (p0.5, p0.7, xL, xH) =

(
96
323

)
− 4p0.5xL−

(
96
323

)
p0.5, and H0.7,0.5

A (p0.5, p0.7, xL, xH)

has the following form:

H0.7,0.5
A (p0.5, p0.7, xL, xH) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 −4

0 0 0 0

0 0 0 0

−4 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The eigenvalues of H0.7,0.5
A (p0.5, p0.7, xL, xH) are (−4, 0, 0, 4), which indicates that

H0.7,0.5
A (p0.5, p0.7, xL, xH) is not positive semi-definite and g0.7,0.5

A (p0.5, p0.7, xL, xH) is

not convex, resulting in a contradiction.

Theorem 3.4.2 The SP formulation is a non-convex optimization problem.

Proof As with the BIC formulation, we assume that the SP formulation induces a

convex optimization problem. Then all of the SP constraints are convex, such that

qθ,Sj (p, xL, xH) ≤ 0, ∀j ∈M, θ ∈ Θ, S−j ∈ S, sj 6= θj

where

qθ,Sj (p, xL, xH) = a(θj | S−j , θ)− λja(sj | S−j , θ). (10)

Consider a problem instance with Φ = {0.5, 0.7}, M= {A,B,C}, and λj =1

for all players. Again examining Player A but now with θ = {0.7, 0.7, 0.7} and S =

{0.5, 0.5, 0.7} (i.e., Player A and B are underbidding), we see that qθ,SA (p0.5, p0.7, xL, xH)

reduces to qθ,SA (p0.5, p0.7, xL, xH) =
(

24
323

)
−
(

24
323

)
p0.5−

(
3
2

)
p0.5xL. The Hessian, Hθ,S

A (p0.5, p0.7, xL, xH)

of qθ,SA (p0.5, p0.7, xL, xH) is equal to
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Hθ,S
A (p0.5, p0.7, xL, xH) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 −3
2

0 0 0 0

0 0 0 0

−3
2

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Its eigenvalues are {−3
2
, 0, 0, 3

2
}, indicating that Hθ,S

A (p0.5, p0.7, xL, xH) is not positive

semi-definite and qθ,SA (p0.5, p0.7, xL, xH) is not convex, resulting in a contradiction.

Corollary 3.4.3 The GSP formulation is a non-convex optimization problem.

Proof The SP constraints are a subset of the GSP constraints.

3.5 Relative Formulation Size Induced via BIC, SP, or GSP Constraints

The number of constraints increases as the truthfulness requirements strengthen.

This result can be observed by inspecting the BIC, SP, and GSP constraint sets.

For instances having a large magnitude of available strategies in Φ or having a large

number of countries in M, the generation of the constraint sets may become com-

putationally burdensome. A similar effect is possible on the computational effort

required to solve the problem. Therefore, in this section we investigate how the size

of each constraint set relates to m and ‖Φ‖.

Assume there are three countries in an alliance and there are two available types

for each country such that Φ = {0.5, 0.7} . If each country has a positive probability

of having a true type of any element in Φ, we have ‖Θ‖ = 8 (i.e., the quantity

of available true type vectors), as presented in Table 1. Given that player types

are independent of each other and come from a common pool, these results can be

generalized in the following manner:

‖Θ‖ = ‖Φ‖m = ‖S‖. (11)
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Table 1. Formulation Size Example: All Type Vectors Existing in Θ by Country

A B C

0.5 0.5 0.5
0.5 0.5 0.7
0.5 0.7 0.5
0.5 0.7 0.7
0.7 0.5 0.5
0.7 0.5 0.7
0.7 0.7 0.5
0.7 0.7 0.7

From equation (11), it can be observed that the number of countries in the alliance

has an exponential effect on the number of true strategy vectors available, whereas

the cardinality of Φ has a polynomial effect for a given number of countries. Although

‖Θ‖ is most relevant to the size of the SP and GSP constraint sets, we will first utilize

the aforementioned results to illustrate the size of the BIC constraint set.

Table 2. Formulation Size Example: αθi,j for Each Country and Type Combination

Type A B C

0.5 0.5 0.1 0.5
0.7 0.5 0.9 0.5

The BIC formulation requires a probability distribution over Φ for each player.

For our sample instance, these probabilities can be found in Table 2. Given this

information, we will investigate the BIC constraint, given that Player A has θA = 0.7.

We know that the possible combinations of reported types is the same as the possible

number of true types. Therefore, considering Table 1 also as a representation of

possible reported types by each player, we observe that the first four rows in Table 1

represent reported type vectors wherein Player A is dishonestly reporting sA = 0.5.

The remaining rows represent type vector declaration such that Player A is reporting

truthfully, or sA = θA. The corresponding BIC constraint has the following form:
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0.7
1.7

(0.1)(0.5)+0.7
1.9

(0.1)(0.5) + 0.7
1.9

(0.9)(0.5) + 0.7
2.1

(0.9)(0.5)

≤ (0.1)(0.5)[(1− p0.5)(1− p0.7)(0.5
1.5

) + (1− p0.5)(p0.7)(0.5
1.5

)+

(p0.5)(1− p0.7)(0.7
1.7

+ xL) + (p0.5)(p0.7)(0.7
1.7

+ xL)] + ...+

(0.9)(0.5)[(1− p0.5)(1− p0.7)(0.5
1.9

) + (1− p0.5)(p0.7)(0.5
1.9

)+

(p0.5)(1− p0.7)(0.7
2.1

+ xL) + (p0.5)(p0.7)(0.7
2.1

+ xL)], (12)

which simplifies to

573

1615
≤ 1367

4845
+

352

4845
p0.5 + p0.5xL (13)

The left hand side of inequality (12) sums over the the last four rows in Table 1

and represents declarations wherein all three countries truthfully reveal their types.

For this reason, inspection probabilities and penalties are irrelevant. No penalties will

be assessed even if an inspection occurs because all agents are acting honestly. The

only computation is the expected value of Player A’s contribution by multiplying his

contribution in each fully truthful declaration vector by the probability the truthful

vector occurs.

The right hand side of the inequality considers scenarios wherein Player A acts

dishonestly. In each term, the probability of a truthful vector occurring is multiplied

by the product of the cost and penalty corresponding to a deceitful declaration and

the probability of the corresponding inspection vector that induces it. For example,

the first term considers Players B and C acting honestly by bidding {0.5, 0.5}, but

Player A underbidding at sA = {0.5}. The last term considers a similar situation, but

with Players B and C having true types of {0.7, 0.7}. With two possible types in Φ,
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there exist four inspection possibilities: no inspection, inspect {0.5} declarations only,

inspect {0.7} declarations only, and inspect both declarations. The probability of each

of these scenarios occurring is determined by our decision variables, p0.5 and p0.7. It

can be observed that the probability of each of the inspection scenarios occurring is

multiplied by the adjusted payment modified by the penalty and subsidy function, as

defined in equation (3).

Following in this manner, it can be shown that the number of constraints required

to enforce BIC is equal to m‖Φ‖ (‖Φ‖ − 1). The logic for this quantity of constraints

is that a given player must be better off declaring his true type when considering

the possibility of choosing any of the other (‖Φ‖ − 1) types. Thus, for a given player

and a given true type, there are (‖Φ‖ − 1) constraints. As the given player has a

positive probability of having any true type of the ‖Φ‖ types available, the number

of constraints for a given player is ‖Φ‖ (‖Φ‖ − 1). To find the total number of BIC

constraints in the set, we must then consider the total number of players to obtain

m‖Φ‖ (‖Φ‖ − 1). This implies that, in our instance having three players and two

types in Φ, the number of BIC constraints required is six, in addition to the 2‖Φ‖

probability constraints and the two penalty non-negativity constraints, resulting in

12 total constraints. Notice, these results only hold when all players are have a type

space of the same cardinality. In the case of independent spaces, Φj, for each player

j, the number of BIC constraints equals
∑m

j=1‖Φj‖ (‖Φj‖ − 1)

When examining the SP formulation, a similar logic can be utilized, but without

the luxury of assuming other players in the declaration vector are acting truthfully,

meaning that decision variables may exist on both sides of the inequality. We now

consider the game wherein all players have a true type of 0.7. In order to be strat-

egyproof, Player A must be indifferent to the actions of Players B and C. For each

possible set of declarations submitted by Player B and C, the rational choice for
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Player A must be to truthfully report his type. We consider each of the possible

declarations of Players B and C in turn.

Case 1: Player B and C report truthfully 0.7

0.7
2.1 ≤(1− p0.5)(1− p0.7)(0.5

1.9) + (1− p0.5)(p0.7)(0.5
1.9)+

(p0.5)(1− p0.7)(0.7
2.1 + xL) + (p0.5)(p0.7)(0.7

2.1 + xL) (14)

Case 2: Player B reports truthfully {0.7} and Player C deceives

(1− p0.5)(1− p0.7)(0.7
1.9) + (1− p0.5)(p0.7)(0.7

1.9)+

(p0.5)(1− p0.7)(0.7
2.1 −

xL
2 ) + (p0.5)(p0.7)(0.7

2.1 −
xL
2 )

≤ (1− p0.5)(1− p0.7)(0.5
1.7) + (1− p0.5)(p0.7)(0.5

1.7)+

(p0.5)(1− p0.7)(0.7
2.1 + xL) + (p0.5)(p0.7)(0.7

2.1 + xL) (15)

Case 3: Player B deceives and Player C reports truthfully 0.7

(1− p0.5)(1− p0.7)(0.7
1.9) + (1− p0.5)(p0.7)(0.7

1.9)+

(p0.5)(1− p0.7)(0.7
2.1 −

xL
2 ) + (p0.5)(p0.7)(0.7

2.1 −
xL
2 )

≤ (1− p0.5)(1− p0.7)(0.5
1.7) + (1− p0.5)(p0.7)(0.5

1.7)+

(p0.5)(1− p0.7)(0.7
2.1 + xL) + (p0.5)(p0.7)(0.7

2.1 + xL) (16)

Case 4: Player B and C deceive

(1− p0.5)(1− p0.7)(0.7
1.7) + (1− p0.5)(p0.7)(0.7

1.7)+

(p0.5)(1− p0.7)(0.7
2.1 + 2(xL)) + (p0.5)(p0.7)(0.7

2.1 − 2(xL))

≤ (1− p0.5)(1− p0.7)(0.5
1.5) + (1− p0.5)(p0.7)(0.5

1.5)+

(p0.5)(1− p0.7)(0.7
2.1 + xL) + (p0.5)(p0.7)(0.7

2.1 + xL) (17)
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In this example, the constraints consider all possible combinations of Player B’s

and Player C’s actions and demonstrate a scenario wherein there exists only one

type of deceitful action (i.e., declaring 0.5 when Player A’s true type is 0.7). In

general, the number of deceitful actions will equal (‖Φ‖ − 1). From these results we

can observe that, for each true type vector, a given player has (‖Φ‖ − 1) ‖Θ−j‖ =

(‖Φ‖ − 1) ‖Φ‖(m−1) constraints to require a truthful action. This results from the

fact that, for a given true type vector, every possible deceitful action by a given

player must be an inferior course of action when all combinations of the remain-

ing players’ declarations are considered. Thus, in order to define all constraints

associated with a given player, we must consider all true type vectors resulting in

(‖Φ‖ − 1) ‖Θ−j‖‖Θ‖ = ‖Φ‖2m − ‖Φ‖2m−1 constraints. Fortunately, in the current

scenario having a common Φ available to each player, the constraints between players

are symmetric. That is, should the true type vector be {0.5,0.5,0.5}, then the truthful

constraint for Player A on the declared vector {0.7,0.5,0.5} will be identical to Player

B on the declared vector {0.5,0.7,0.5} and Player C on {0.5,0.5,0.7}. It is sufficient

in this symmetric situation to concern ourselves with only the constraints for a single

player when solving the optimization problem. This implies that, in the example of

three players and two types in Φ, the number of SP constraints required is 32 and the

total for the problem instance is 38. However, in general, to define the total amount of

SP constraints, we must consider all players, resulting in
∑m

j=1 (‖Φj‖ − 1) ‖Θ−j‖‖Θ‖

constraints where Φj is equal to the number of declarations available to the jth player.

The GSP formulation can be considered as a generalization of the SP formula-

tion wherein the SP formulation only considers the singleton set of colluding players.

It is well known from Pascal’s triangle that the sum of the number of combina-

tions across all subset sizes is equal to 2n. When considering the size of C, we

exclude the empty set and observe the cardinality of C is equal to 2n − 1. There-
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fore, in general, the GSP formulation sums over all 2n − 1 terms and has the form∑
C⊆M((

∏
j∈C ‖Φj‖)− 1)‖Θ−C‖‖Θ‖. The first term in the summation represents the

number of group dishonest actions available to the colluding set of players. This

term is then multiplied by the number of different declared types available to the

non-colluding players and then by the number of possible true types, respectively.

However, when players draw from an identical type space, we can again leverage the

problem’s symmetry and consider any subset of M such that it contains exactly one

element of size 1 through m. We call any such subset M̂ and its cardinality is simply

m. Summing over each of these terms, the number of GSP constraints under symme-

try is
∑
C∈M′(‖Φ‖

‖C‖− 1)‖Θ−C‖‖Θ‖. As with SP under symmetry, we do not need to

consider each colluding set individually. We only need to concern ourselves with the

benefit a colluding set of a given size can achieve. Thus, the reduction of combina-

tions from 2n−1 to m serves to decrease the size of the GSP constraints dramatically

for large instances having symmetry. In fact, the number of GSP constraints required

for the example problem is 136.

45



IV. Results

The findings of the preceding chapter preclude the guarantee of gradient-based

techniques finding an optimal solution to the BIC, SP or GSP problems. Thus, in

this chapter, we explore the efficacy of several meta-heuristics and a global optimiza-

tion solver with regard to these problems. We compare methods available in the

MATLAB 2015a Optimization Toolbox, namely the GlobalSearch, MultiStart, and ga

functions, utilizing the base settings to the global solver BARON. The GlobalSearch

function implements the procedure introduced by Ugray et al. [2007] wherein a scatter

search algorithm generates potential starting points, executes a gradient-based search

(i.e., fmincon) on a feasible starting point, and then iterates through the remaining

points by deeming them good or poor candidates. An additional gradient-based

search is performed on each of the points deemed to be good candidates, whereas the

poor candidates are discarded. The MultiStart procedure performs a gradient-based

search technique from each point in a collection of uniformly distributed solutions

within the feasible region. For consistency, we specify the gradient-based search as

fmincon for use within both the GlobalSearch and MultiStart metaheuristics. The ga

function applies a genetic algorithm with base settings including an initial solution

population from a uniform distribution, a parent selection function utilizing a uniform

distribution, a uniform binary crossover technique and a Gaussian mutation function

[The MathWorks, Inc., 2015]. Of the three MATLAB heuristics, MultiStart and ga

are compatible with parallel processing, whereas GlobalSearch is not. BARON is a

general purpose, global optimization solver for mixed integer nonlinear programs. It

utilizes a branch and reduce technique wherein a convex relaxation is generated and

solved, a feasible solution is recovered, and the feasible region is subsequently parti-

tioned to generate subproblems. This process continues for subproblems, enhanced by

both feasibility and optimality-based range reduction, until a global optimal solution
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(within some small ε tolerance) is identified with finite computational effort. Herein,

we invoke the BARON commercial solver using the default termination criteria of a

0.001 (0.1

Section 4.1 solves the previously introduced sample instance for all problem vari-

ants using each solver. Utilizing the PSIE objective function with equal weights, we

first examine the performance of each solver in terms of solution quality and compu-

tational efficiency. We then examine the effects of weighting the two PSIE objectives

differently to explore the Pareto front associated with these problems. In Section

4.2, we expound upon the formulation size discussion from the previous section and

demonstrate memory limitations encountered when solving the BIC, SP and GSP

problems. Particularly, we show the difficulty in implementing the SP and GSP for

large values of m or ‖Φ‖. Finally, Section 4.3 tests the superlative solution method

identified in Section 4.1 on larger instances of the BIC problem.

4.1 Small Instance Testing

Analysis of Solver Performance.

In this section, we solve a BIC, SP and GSP problem instance withM = {A,B,C},

Φ = {0.5, 0.7}, λj = 1 for all players in M, and equal weights in the PSIE objective

function. This problem instance, and all following problem instances, are constructed

utilizing two 2.60GHz Intel Xeon processors and 192GB of RAM within MATLAB.

Solver methods internal to MATLAB are solved on the same machine. However, when

invoking BARON, these problems are converted into a GAMS output file and solved

on the NEOS server hosted by the University of Wisconsin in Madison [Czyzyk, J.,

Mesnier, M. P., and Moré, J. J., 1998; Dolan, E, 2001; Gropp & Moré, 1997]. Each

method is given an upper bound of one hour to solve this small instance example.

Our results in terms of solution quality of the objective function and solution time in
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Table 3. Small Instance Testing Results for BIC, SP and GSP

Problem BARON* MultiStart** GlobalSearch*** ga**
Objective Solution Time(sec) Objective Solution Time(sec) Objective Solution Time(sec) Objective Solution Time(sec)

BIC 0.4709 0.315 0.4709 22.195 0.4709 734.121 0.4711 85.192
SP 0.482 5.915 1.2549 98.973 2.473 1013.452 0.4942 115.438
GSP 0.482 58.597 0.494 104.30 0.494 1187.666 0.491 153.186

* Problems constructed in MATLAB, GAMS file generated in MATLAB and uploaded to NEOS server.
** MATLAB parallel processing capability enabled.
*** Incompatible with MATLAB parallel processing. Solver utilizes serial computation.

seconds are summarized in Table 3.

We do not explicitly differentiate between the time spent solving a problem in-

stance and the time spent building it. Instead, the total processing time is aggregated

into the metric called solution time. This is done for consistency. For example, while

BARON only requires the constraint building function to be called once, MultiStart

and GlobalSearch may call the original constraint building function multiple times

throughout the algorithm. Furthermore, the parallel algorithms in MATLAB make

the distinction between build and solve times difficult to ascertain. Therefore, we are

comparing the total efficacy of the process from problem construction to optimization.

The results in Table 3 indicate BARON finds the best solution in the shortest

amount of time for all of the problem instances. When evaluating the MATLAB

metaheuristics, ga is the second best performing algorithm with a minimum and

maximum objective gap to BARON of 0.04% and 2.53%. However, it requires a min-

imum three-fold increase and a maximum of 270-fold increase in time from BARON

to arrive at its solution. MultiStart is the second best performing algorithm with re-

spect to solution time, but it falls short of ga in terms of solution quality. MultiStart

arrives at a minimum and maximum objective gap to BARON of 0.00% and 160.35%

while requiring a minimum twofold and maximum 70-fold increase in solution time.

GlobalSearch is the worst performer in both metrics. Its minimum and maximum

objective function gap to BARON is 0.00% and 413.07% and requires a minimum of

17-fold and a maximum of 2331-fold increase in solution time. Of note, the minimum

and maximum relative gaps for each metaheuristic compared to BARON occurred
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Table 4. BARON Solution Time Breakout for Small Instance Testing

Problem Build Time(sec) Solve Time(sec) Total Time(sec)

BIC 0.312 0.003 0.315
SP 5.911 0.004 5.915

GSP 58.590 0.007 58.597

when solving the BIC and SP problems, respectively.

We close this discussion on solver performance by examining the solution time

required for BARON in more detail. While BARON clearly outperforms the other

tested solvers, the reported decision variable values are not necessarily optimal. Test-

ing performed by Neumaier et al. [2005] demonstrated an experiment wherein BARON

arrived at an incorrectly reported optimal solution for 1.8% of instances in an exam-

ined set. Also, it can be observed in Table 4 that the majority of BARON’s solution

time required does not result from the solution time, but from the time required to

construct the instances. These results motivate further examination in subsequent

sections on the computational effort required to create large instances of the SP and

GSP problems.

Analysis of Decision Variables for Varying Truthfulness.

Examining the reported solutions by BARON and ga in Table 5 illustrates that,

in this instance, the required increase in inspection probability and penalty values

appear marginal compared to the increase in the strength of truthfulness constraints

from BIC to GSP. However, in the arena of international alliances, consider the follow-

ing: in December 2015, the UN’s Fifth (Administrative and Budgetary) Committee

recommended the General Assembly adopt a $5.4 billion budget for 2016-2017 [United

Nations, 2015]. Should our example alliance of Countries A, B and C require its mem-

bers to contribute this amount and adopt the solutions from BARON in Table 5, a

BIC mechanism would require xL = $1.068 billion, and a SP or GSP mechanism
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Table 5. Reported Optimal Decision Variables for Small Instance Testing

BARON ga
Problem p0.5 p0.7 xL xH p0.5 p0.7 xL xH

BIC 0.273 0.00 0.1979 0.00 0.266 0.00 0.2051 0.00
SP 0.280 0.00 0.202 0.00 0.2945 0.00 0.1997 0.00

GSP 0.280 0.00 0.202 0.00 0.301 0.00 0.190 0.00

would require xL =$1.091 billion, an increase of $21.6 million (2.07%), in addition to

the 0.007 increase in inspection probability, for a stronger guarantee of truthfulness.

For many countries in the United Nations, this is a small increase when compared to

their GDP. For example, the World Bank estimates the GDP of the United States to

be $17.95 trillion and the GDP of Greece to be $195.21 billion. For other countries,

such a fine represents a more substantial fraction of their GDP (i.e., Mongolia and

El Salvador with respective GDP estimates of $11.75 billion and $25.85 billion). The

World Bank also estimates another UN nation, Tuvalu, to have a $37.75 million GDP.

The Tuvalu economy would struggle to bear the burden of the increase in penalties

alone imposed via the BIC and SP mechanisms. Therefore, as a central authority of

the international alliance, the damage attributed to a country required to increase the

expectation of truthfulness is relative, and alternative solutions attained by varying

weights on the objectives may be necessary.

For this reason, we use BARON to estimate the Pareto front associated with

these problem instances by applying the PSIE method and varying wP from 0.1 to

0.9 in increments of 0.1, such that wI = 1 − wP . Utilizing these results we begin to

observe the trade-off between inspection frequency and the size of deception penalties

in Figure 1 and Table 6. At one extreme, we see the convergence of solutions across

all instances to an inspection effort of one and a null penalty as wP approaches

one. This is due to the central authority’s desire to minimize the penalties applied,

requiring it to inspect and correct all information received to induce truthfulness
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Table 6. Pareto Front Point Estimates for Small BIC, SP and GSP Instances

BIC SP GSP
wI wP Penalty Sum Inspection Effort Penalty Sum Inspection Effort Penalty Sum Inspection Effort

0.9 0.1 0.743 0.091 0.758 0.094 0.762 0.093
0.8 0.2 0.471 0.136 0.482 0.140 0.482 0.140
0.7 0.3 0.342 0.178 0.352 0.182 0.349 0.183
0.6 0.4 0.260 0.223 0.266 0.227 0.263 0.230
0.5 0.5 0.1979 0.273 0.202 0.28 0.202 0.282
0.4 0.6 0.148 0.334 0.150 0.343 0.150 0.343
0.3 0.7 0.104 0.416 0.105 0.428 0.105 0.428
0.2 0.8 0.062 0.545 0.062 0.56 0.062 0.558
0.1 0.9 0.017 0.818 0.015 0.848 0.015 0.839

among its members. At the opposite extreme, we have an asymptote where the sum

of the inspection effort approaches zero as wI approaches one. The central authority

wishes to inspect as infrequently as possible but levies a heavy fine on a deceitful

nation should it detect dishonesty. The results indicate, for this instance, the central

authority would not be required to allocate much more effort for inspections or levy

substantially higher penalties to attain truthfulness under stronger assumptions (i.e.,

comparing BIC to SP or GSP). In fact, the SP and GSP curves are nearly on top of

one another.
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Figure 1. Pareto Front Estimates of BIC, SP and GSP Small Instances
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This problem instance raises a question regarding the relevance of the GSP for-

mulation. The solutions to all of the aforementioned SP and GSP instances, even

with varying weights, are similar. We note this phenomenon does not hold for the

general case, but it is a product of the penalty and subsidy function introduced in

this research. In the aforementioned instances, the optimal SP decision variables

limit the amount of potential subsidy in the system to such a degree, that little if any

additional effort is required to prevent collusion. Thus, some of the optimal solutions

to the SP instances are group strategyproof. However, the feasible regions of SP

and GSP remain distinct, even if the optimal solutions nearly coincide. In fact, the

optimal SP decision variables with wI = 0.9 are infeasible in the corresponding GSP

instance. In other words, the induced game is not group strategyproof.

Should additional subsidy be introduced, nations could experience more collusion

benefit. Consider an alternative penalty and subsidy function wherein, if the central

authority detects a deceitful action, it contributes xL+xH of its own funds to be shared

as a subsidy, in addition to the deception fines. Figure 2 shows the Pareto fronts

associated with BIC, SP and GSP for the alternative penalty and subsidy function.

In these GSP instances, additional inspection effort and/or deception penalties are

required to deter collusion. Thus, the difference in effort between levels of truthfulness

seems to be significantly influenced by the underlying penalties and subsidies used as

incentive.
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Figure 2. Pareto Front Estimates of BIC, SP and GSP Small Instances with Alternate Penalty and Subsidy Function
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4.2 Memory Limitations

In Table 4, the build times required to construct problem instances and GAMS

model files indicate a possible trend toward higher build times for larger instances.

Graphically, we can visualize the dramatic increase in the number of constraints

required for each formulation in Figure 3.

BIC Constraints SP Constraints

GSP Constraints

Figure 3. Comparison of the Number of Constraints Required for Varying m and ‖Φ‖

From inspection of Figure 3, the difference in magnitudes of the number of con-

straints required for each formulation is immediately apparent. At m = 4 and

‖Φ‖ = 8, the BIC, SP, and GSP problems necessitate 224, 1.468 × 107, 6.471 × 107

constraints, respectively, when it is assumed a common Φ is available to all players.

Thus, it can be observed that memory limitations will become an obstacle sooner for

GSP and SP than for BIC.

The machine utilized for the current study is equipped with 192GB of RAM.

The ensuing discussion addresses an upper bound on problem size based on available

RAM, independent of algorithm form or memory structures utilized to construct any
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Figure 4. Feasible (m,‖Φ‖)-combinations for a Computer with 192GB of RAM or 64
bit Theoretical Max (234 GBs)

problem instance. For BIC, SP and GSP, should we assume that only Θ, the set of

true type vectors, is stored in memory, the gray region under the lower curve in Figure

4 represents feasible Θ in MATLAB not exceeding 192GB of RAM. These calculations

are based on the maximum array able to be stored in memory with m‖Θ‖ = m‖Φ‖m

double entries requiring eight bytes apiece.

By holding m constant, it can be observed that ‖Φ‖ has a polynomial effect on

memory required, whereas m has an exponential effect for a fixed ‖Φ‖ . Hence, in

Figure 4, the memory limit is reached earlier by increasing m in isolation than by

increasing ‖Φ‖. Considering the UN has 193 members, NATO 28 members, and the

OAS 21 members, Figure 4 illustrates that meaningful instances for these alliances

could not be be solved on the computer used in this study. Furthermore, a theoretical

upper limit on RAM capable of being installed in a 64-bit computer can be derived

from the largest unsigned integer possible (e.g., 264 bytes) as this equals the number of

addressable units. Thus, without concerning ourselves with operating system require-

ments, a maximum theoretical RAM limit for a 64 bit computer is 234 GBs. In Figure

4, the yellow area under the higher curve represents Θ not exceeding the theoretical

value of memory. We observe that a 25 nation coalition is limited to five declared

types in Φ. An alliance the size of the UN would require so much memory that Φ
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would be a singleton set. However, solving such an instance would be meaningless as

it is impossible for any country to act deceitfully.

Having inspected the global memory limitations across all problem types, we now

investigate the memory limitations inherent to the current study and the methodology

utilized to generate each problem formulation. The predominant memory demands

for all problems are composed of storing Θ, a matrix of equal dimensions as Θ list-

ing all possibilities for each player of the cost sharing function, a matrix of possible

inspection combinations, and a set of constraint strings. The matrix of inspection

combinations is of type double with 2‖Φ‖ entries and each constraint string is as-

sumed to hold 56 characters requiring two bytes apiece. Figure 5 illustrates the

feasible (m,‖Φ‖)-combinations for instances we can formulate using 192GB of RAM

and the aforementioned structures in memory for the BIC, SP and GSP problems,

respectively. The blue portion of the graph represents feasible (m,‖Φ‖)-combinations

for all problem types. The red section indicates (m,‖Φ‖)-combinations feasible for

SP and BIC, while the green area indicates (m,‖Φ‖)-values feasible only for BIC.

Referencing Figures 4 and 5, we see the shape of the gray and green regions in each

respective graph are very similar, implying that our formulation generation methodol-

ogy is capable of creating an instance of BIC near the global upper bound of storing

only Θ with 192GB of RAM. However, the additional memory structures required

for SP and GSP become exceptionally burdensome and greatly limit the size of the

alliance we can consider.

For this reason, the ensuing section of large instance problems will only consider

the BIC formulation. The required data structures for SP and GSP cannot even be

stored in memory to build such instances.
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Figure 5. Feasible (m,‖Φ‖)-combination Formulations by Problem Type with 192 GB
RAM

4.3 Larger Instance Testing

Given the memory requirements for SP and GSP problems, we analyze the behav-

ior of BARON -reported optimal solutions for larger instances of the BIC problem.

However, the results of the previous section demonstrate that, for global alliances of

substantial size, solving even the BIC problem becomes impractical. The larger in-

stances herein examined are loosely based on UNASUR, a 12-nation alliance in South

America analogous to the EU. Considering memory limitations, we set ‖Φ‖ = 5. We

again utilize the PSIE objective function with equal weights.

We conduct a full block design experiment with two factors: (1) the clustering of

types in Φ, and (2) the composition of nation probability distributions over Φ. One

possible interpretation of these factors is to consider them as the possible degree of

wealthy disparity and the probability of existing a large amount of wealthy alliance

nations in relative terms, respectively. The clustering factor is divided into five levels

(i.e., five possible reserve price declarations), as described in Table 7. We consider

alliances with a High End Cluster with Outlier (HEO), Low End Cluster with Outlier

(LEO), High End Cluster (HEC), Low End Cluster (LEC), and Balanced (BAL)

clustering of available types in Φ. The HEO and LEO levels represent situations
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wherein a majority of available types lie close to one end of the spectrum, but an

outlier exists near the opposite end. In HEO, the majority of available types represent

a high valuation of the alliance with a single low valuation. LEO is the opposite

representing a majority low valuation of the alliance, and a single high valuation.

HEC and LEC are the same as HEO and LEO, but without the outliers. The final

clustering factor, BAL, represents a scenario where valuations of the alliance are

evenly spread between low and high valuations. These factors attempt to capture

behavior exhibited from an alliance composed entirely or primarily of wealthy nations

(HEC and HEO, respectively), entirely or primarily of less affluent nations (LEC and

LEO, respectively), and of an even mixture of the two (BAL). Specifically, the HEO

and LEO factors are designed to explore possibilities associated with behavior seen

in NATO wherein a majority of the burden is born by a minority of the more affluent

alliance members, as discussed in Olson & Zeckhauser [1966]. The second factor

concerning the composition of nation probability distributions over Φ analyzes the

effects of different types of uncertainty on the mechanism’s parameters. We consider

three levels of compositions as seen in Table 8. The first is an equitable population

such that an identical number of players have a uniform, right skewed, left skewed, or

symmetric distribution over Φ. The second and third compositions are either right

skewed or left skewed wherein a plurality of players are predisposed to lower or higher

valuations, respectively. The probabilities associated with each player distribution can

be found in Table 8, and the levels of the population composition factor can be found

in Table 9. Our full block design experiment will analyze all fifteen combinations of the

five levels on the clustering factor and the three levels on the population composition.
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Table 7. Larger Instance Testing: Categorical Factors on Clustering of Types in Φ

Clustering of Types in Φ φ1 φ2 φ3 φ4 φ5

High End Cluster with Outlier (HEO) 0.15 0.75 0.80 0.85 0.90

Low End Cluster with Outlier (LEO) 0.05 0.10 0.15 0.20 0.70

High End Cluster (HEC) 0.70 0.75 0.80 0.85 0.90

Low End Cluster (LEC) 0.05 0.10 0.15 0.20 0.25

Balanced (BAL) 0.10 0.30 0.50 0.70 0.90

Table 8. Larger Instance Testing: Possible Nation Distributions Over Φ

Cluster of Types in Φ P(φ1) P(φ2) P(φ3) P(φ4) P(φ5)

Uniform (UNF) 0.20 0.20 0.20 0.20 0.20

Right Skewed Distribution (RS) 0.30 0.40 0.20 0.05 0.05

Left Skewed Distribution (LS) 0.05 0.05 0.20 0.4 0.30

Symmetric Distribution (SYM) 0.05 0.20 0.50 0.20 0.05

Table 9. Composition of Nation Distributions in Populations

Possible Distribution Types UNF RS LS SYM

Equitable Population 3 3 3 3

Right Skewed Population 0 6 3 3

Left Skewed Population 0 3 6 3

As with the small instance testing, the majority of solution time required for

each instance is due to constraint generation. Each of the 15 instances required

between five-and-a-half to six hours of build time, totaling approximately 88 hours

of computation time. However, BARON required less than a single second to solve

any given instance. The values for the decision variables of the experiments can be
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Equitable Population

Right Skewed Population Left Skewed Population

Figure 6. Decision Variable Results in the 12 Player and 5 Type Full Block Experiment

seen graphically in Figure 6, and higher fidelity information on the decision variables,

objective function values, and computational effort required is available in Table 10.

Analyzing the objective function values with an equitable population composition

across all levels of the clustering factors in Table 10, we see the pure low end cluster

(LEC) and high end cluster (HEC) levels yield the lowest objective function values,

whereas, the highest two objective function values are obtained from the LEO and

BAL levels, respectively. This trend also holds under the right skewed population

composition. In contrast, in the left skewed composition, HEC and HEO have the

lowest objective function value, but LEO and BAL remain the highest. Considering

each clustering individually, it can be observed that deception provides varying levels

of benefit. In both the LEC and the HEC, a successful deceptive declaration can

yield a maximum of 0.20 benefit, if a nation is of the highest type and dishonestly

declares the lowest reserve price available (disregarding any potential subsidies from
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other dishonest players). However, the same logic reveals that in the HEO and LEO

the largest deceitful benefit is 0.65 and in BAL the value is 0.8. With these potential

deception benefits in mind, the rationale behind the aforementioned objective function

results begins to take form.

Across all clustering factors and population composition factor combinations, we

observe inspection probabilities are decreasing across types in ascending rank order.

That is, a type lower in value than another has a higher corresponding inspection

probability. Inspection of the individual decision variable values and a knowledge of

the underlying factors portends an explanation of BARON’s solutions, which again

relies upon the benefit of deception. For example, the LEC and HEC types are

tightly clustered, yielding small potential deception benefits for nations of any true

type, with a maximum of 0.20. The lower relative inspection probabilities of LEC

and HEC across all population compositions are representative of the smaller benefits

in deceit. Under LEO, a nation of true type φ5 can benefit substantially from a

successful deceptive bid of any of the other four types ranging from 0.50 to 0.65.

Thus, we see high p1 through p4 values across all population compositions. Inherent

in the structure of the type space, many different declarations have the ability to

substantially reward deception in LEO or BAL. In either scenario, a player of type φ5

has an array of declarations which would significantly reduce their contribution on a

successful deceptive bid. For this reason, we observe these two clustering factors yield

the highest penalties and generally high inspection probabilities. Similar analysis on

HEO reveals a high probability of inspection on the lowest declarable reserve price

and a large underbidding penalty is required to deter a player of a higher type to not

declare φ1.

Finally, several trends are visible with regard to solution times. Build times show

a slightly increasing trend over population composition factors from equitable popula-
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tions to right skewed populations and to left skewed populations. However, BARON

solve times demonstrate notable differences over clustering factors. The LEO and

HEO clustered problems require nearly a second to solve over all population compo-

sitions. HEC and BAL are comparable in requiring BARON times of approximately

one third of a second. LEC uniformly requires the least amount of time, approxi-

mately one tenth of a second.

Based on these combined results, in general, the clustering factor is more signif-

icant than the population composition factor. This result is visible by inspection of

Figure 6. All three population composition graphs look nearly identical, with the

exception of the increased xL value in the left skewed population when compared to

the other two compositions. We also conjecture that optimal inspection probabilities

are decreasing, or at least non-increasing, over types in ascending rank order. Finally,

the elevated BARON solve times for HEO and LEO compared to the other instances

leads us to conjecture these problems induce a higher degree of non-convexity.
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Table 10. Decision Variable Values, Objective Function Values and Computational Effort in the 12 Player, 5 Type Block
Experiment

Symmetric Population Right Skewed Population Left Skewed Population

Clustering HEO LEO HEC LEC BAL HEO LEO HEC LEC BAL HEO LEO HEC LEC BAL
p1 0.352 0.345 0.124 0.112 0.325 0.346 0.332 0.123 0.115 0.314 0.348 0.337 0.124 0.15 0.317
p2 0.081 0.335 0.095 0.110 0.245 0.079 0.32 0.094 0.112 0.237 0.08 0.325 0.094 0.145 0.239
p3 0.054 0.326 0.064 0.098 0.162 0.054 0.308 0.064 0.098 0.158 0.054 0.314 0.064 0.129 0.159
p4 0.028 0.317 0.033 0.073 0.080 0.027 0.298 0.033 0.068 0.079 0.027 0.304 0.033 0.087 0.08
p5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
xL 0.38 0.885 0.286 0.353 0.613 0.377 0.862 0.285 0.354 0.601 0.378 0.869 0.286 0.443 0.606
xH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DV Sum 0.895 2.208 0.602 0.746 1.425 0.883 2.12 0.599 0.747 1.389 0.887 2.149 0.601 0.954 1.401
Build Time (sec) 21395.26 20664.14 20885.93 19437.85 18905.30 21547.73 20918.44 20995.44 20109.41 20528.56 21441.11 21204.22 21251.48 21210.87 21527.84
BARON Time (sec) 0.742 0.450 0.326 0.134 0.442 0.915 0.768 0.406 0.160 0.368 0.909 0.810 0.353 0.101 0.322
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V. Conclusion

The declarable types in Φ are meant to represent the varying levels of worth a

member state can place on an alliance. Since the types in Φ are the reserve prices of

member nations in terms of the total proportion of alliance cost each nation is willing

to contribute, differing definitions can be inferred on the meaning of worth. That is, a

wealthy nation may feel ambivalent to the mission of an alliance but be willing to make

an equitable contribution in proportion to the alliance cost. Similarly, a less affluent

nation may feel strongly about the mission and choose to contribute a substantial

amount. The implementation of a cost sharing mechanism for an international alliance

is designed to elicit such preferences, limit the ability of a nation to exploit another,

and reduce the risk of a single country disproportionately bearing part of the collective

burden.

The current research examines optimization formulations having mechanisms that

guarantee truthfulness among members by imposing constraints of variable strength.

While any feasible solution to the BIC, SP, and GSP formulations correspond to

games having a Bayes-Nash equilibrium, a Nash Equilibrium in dominant strategies,

and a collusion resistant Nash equilibrium, respectively, an optimal solution to any

of these problems yields an game based on the central authority’s preferences. Each

problem is non-convex and thus requires a global solver to find an optimal or near

optimal solution. For very large alliances with many possible type declarations, all

three of the problem variants are subject to memory limitations. However, it has

been shown that the BIC problem is solvable in a reasonable amount of time for

intermediate-sized instances. For such instances, the optimal solutions have been

observed to be more sensitive to the clustering of types available for declarations

than for the probability distributions over them.
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5.1 Limitations

We note that some of the underlying assumptions of this research are impossible

or improbable to occur in real world scenarios. Specifically, perfect inspection will

not occur. Should an alliance assume a cost sharing mechanism as described, there

would certainly be some error in discerning a nation’s true type. Furthermore, the

notion of a nation’s true type is somewhat nebulous. A nation is not a single actor,

but rather a collection of individuals. Thus, a single uniform valuation of an alliance

in this context is unlikely. Instead, some variant of a social choice function would

likely be required to ascertain an agreeable value for the nation. In practice, this

value would likely not be voted on by the population but instead determined by a

small number of national leaders.

Likewise, deception as described in this research is binary. However, we note that

it is possible and, moreover, it is probable that Φ is composed of some highly dense

set of values between zero and one. In such a situation, the mechanism described in

this research would consider a bid very close, but still lower, than the true reserve

price (e.g., one ten millionth), as a deceptive act. However, such a bid could easily

be attributed to error from the nation or the central authority.

In general, a central authority ascertaining truthful preferences in any situation

is dubious. Even if it were possible in an international alliance, inevitable political

contention would ensue as the central authority attempted to collect the deception

penalties, especially if the mechanism required overbidding penalties. If a central

authority is not deemed credible by every country (i.e., some countries refuse to

pay their penalties), the equilibrium results will not hold. The direct application of

this research to an international alliance may not then be advisable. However, it

is able to provide a bound on the effort required to ensure truthfulness in different

equilibriums, and an understanding of what would be required to limit the effect
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of dishonest political maneuver and coercion in an alliance. It also deviates from

traditional burden sharing literature focusing on a central authority directly setting

burden shares. Instead, the mechanisms in this research calculate the burden shares

on the importance each nation places on the alliance.

5.2 Future Work

Quantifying the effects of probabilistic versus perfect inspection is a warranted

sequel to this research. Likewise, given the memory limitations for analyzing very

large alliances, there may exist a method to accurately aggregate an alliance’s member

nations into blocks such that a meaningful problem with respect to NATO or the UN

is solvable. The underlying cost sharing function in this research is cross-monotonic.

Alternative cross-monotonic cost sharing functions, or those which are not cross-

monotonic, should be analyzed to determine if similar behavior is encountered.

If a cross sharing function that is not cross monotonic is selected, it may lose the

property of being in the core, but it could be selected in such a way that it still exists

in either the least core or the nucleolus. Should existence be in the least core, the allo-

cation is such that the cost of deviating from the grand coalition, ε, has been reduced

to the least feasible value. In contrast, existence in the nucleolus implies the max-

imum dissatisfaction of the grand coalition is minimized. Finally, the BIC problem

assumes the independence of valuations by each member state. This property may be

reasonable in general cost sharing circumstances; however, an international alliance

may include countries with dependent types (e.g., the close historical relationship be-

tween the US and the UK). In such a scenario, the optimization problems as described

are no longer appropriate and must be adapted to account for this interdependence.

Finally, the extension of this research to a corporate setting may allow for the

direct application of the explored mechanisms. For this to occur, the central authority

67



must have enough power and credibility to enforce inspections and penalities. One

such application may be the sharing of cost in a multi-party arbitration setting.

However, it may be that the involved parties are no longer declaring reserve prices, but

payment capacities. Other changes to the interpretations of the parameters utilized

in this research would likely follow.
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Moulin, Hervé. 1994. Social Choice. Handbook of Game Theory with Economic
Applications, 2, 1091–1125.
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